Protein Engineering vol.12 no.2 pp.107-118, 1999

Protein subcellular location prediction

Kuo-Chen Chout and David W.Elrod consisted of 894 proteins, of which 649 were intracellular and
245 extracellular; the testing set consisted of 379 proteins, of
which 225 were intracellular and 154 extracellular. Recently,
Cedancet al. (1997) extended the discriminative classes from
!To whom correspondence should be addressed. two to five, i.e. extracellular, integral membrane, anchored
E-mail: kuo-chen.chou@am.pnu.com membrane, intracellular and nuclear. This represents remark-
The function of a protein is closely correlated with its  able progress in this area. Furthermore, in an attempt to
subcellular location. With the rapid increase in new protein ~ improve the prediction quality of protein cellular location,
sequences entering into data banks, we are confronted with they proposed an algorithm called ProtLock. The idea of
a challenge: is it possible to utilize a bioinformatic approach  predicting the cellular location of a protein according to its
to help expedite the determination of protein subcellular amino acid composition alone, as done in ProtLock, is actually
locations? To explore this problem, proteins were classified, stimulated by the encouraging results of structural class predic-
according to their subcellular locations, into the following  tion, where the only input is also the amino acid composition
12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (see, e.g., P.Y.Chou, 1980, 1989; Nakashigtaal, 1986;

(4) endoplasmic reticulum, (5) extracell, (6) Golgi appar- K.C.Chou, 1995; Chou and Zhang, 1995). An analysis in an
atus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) attempt to understand the correlation of the structural class
peroxisome, (11) plasma membrane and (12) vacuole. Based and subcellular location of a protein with its amino acid
on the classification scheme that has covered almost all the composition was recently given by Bahat al (1997) and
organelles and subcellular compartments in an animal or Andradeet al. (1998), respectively.

plant cell, a covariant discriminant algorithm was proposed Approaching the problem in a different way, Nakai and
to predict the subcellular location of a query protein  Kanehisa (1992) and Clarag al. (1997) proposed to predict
according to its amino acid composition. Results obtained the cellular location of proteins based on their N-terminal
through self-consistency, jackknife and independent dataset sorting signals. Obviously, these algorithms rely strongly on
tests indicated that the rates of correct prediction by the the existence of leader sequences. However, as pointed out
current algorithm are significantly higher than those by  recently by Reinhardt and Hubbard (1998), ‘In large genome
the existing methods. It is anticipated that the classification analysis projects genes are usually automatically assigned and
scheme and concept and also the prediction algorithm can these assignments are often unreliable for theegions’.
expedite the functionality determination of new proteins, ‘This can lead to leader sequences being missing or only
which can also be of use in the prioritization of genes and partially included, thereby causing problems for prediction
proteins identified by genomic efforts as potential molecular ~ algorithms depending on them’. Therefore, a method based on
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targets for drug design. the amino acid composition would be more useful in practical
Keywords amino acid composition/bioinformatics/covariant app“CfithHS-.
discriminant/organelles/subcellular compartments As stated in the paper by Cedaebal. (1997), the ProtLock

algorithm is mainly based on the procedure reported by Chou
and Zhang (1995) for the prediction of protein structural
Introduction classes according to Mahalanobis distances. Since the least

. _ . _ Mahalanobis distance algorithm (K.C.Chou, 1995; Chou and
Given the sequence of a protein, how can its cellular locatiorzhang, 1995) is valid only when the training subset sizes are
and biological function be determined? This is a problemthe same or approximately the same or poor predictions will
vitally important to both cell biologists and bioinformatists otherwise result (Chowet al, 1998; Chou and Maggiora,
today. Since the number of sequences entering into data bankggs), in the ProtLock algorithm the training set for each class
has been rapidly increasing, it is time consuming and costlyvas chosen to contain the same number of proteins. However,
to approach this problem entirely by performing variousas shown later, when the cellular protein classification is
locational and functional experimental tests. For example, irtonducted at a deeper level, it is found that proteins located
the recent release 35.0 (November 1997) of SWISS-PROin some organelles are much more abundant in the SWISS-
(Bairoch and Apweiler, 1997), the number of sequence entrieBROT databank than in others. Besides, for a real cell the
has reached 69 113, which represents an increase of 17.108amber of cellular locations is much greater than five consid-
over release 34.0 (October 1996). In view of this, it is highlyered by Cedanet al. (1997). For example, the number of
desirable to develop an algorithm for rapidly predicting theproteins described as being located in a nucleus is much
subcellular compartments in which a new protein sequencgreater than that in a lysosome, and the number of proteins in
could be located. cytoplasm is much greater than that in a Golgi apparatus. In

In a pioneering study, Nakashima and Nishikawa (1994 )iew of this, can we develop an algorithm to predict effectively
proposed an algorithm to discriminate between intracellulathe locations of proteins in cells at a much more discriminative
and extracellular proteins by amino acid composition andevel? The current study was initiated in an attempt to solve
residue-pair frequencies. In their method, the training sethis problem.
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Table I. Breakdown of the datasets used in this study

Cellular location Datas@t

s 2 g ¢ g I
(1) Chloroplast 154 119 154 119 154 119
(2) Cytoplasm 592 786 592 786 592 786
(3) Cytoskeleton 37 19 - - - -
(4) Endoplasmic reticulum 53 108 53 108 - -
(5) Extracell 230 101 230 101 230 101
(6) Golgi apparatus 26 4 — - - -
(7) Lysosome 38 31 - - - -
(8) Mitochondria 86 165 86 165 - -
(9) Nucleus 288 431 288 431 288 431
(10) Peroxisome 32 24 — - - -
(11) Plasma membrane 758 803 758 803 758 803
(12) Vacuole 25 0 - - - -
Total proteins 2319 2591 2161 2513 2022 2240

@The datasets were extracted from release 35.0 of SWISS-PROT (Bairoch
and Apweiler, 1997). Datas&2 was obtained by following procedures 1-3
as described in Location classification. Datas¥tand S® were derived

from S2. DatasetsS'2, S’ and S are the three independent datasets, none of
which contains a protein that occurs in the datas&sS’ and S,

respectively, as described in Location classification, point 5.

Fig. 1. Schematic diagram showing the subcellular locations of proteins. For
simplification, indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are used to N , - , .
represent chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, annotated with ‘microtubule’ or ‘filament’ should be assigned

extracell, Golgi, lysosome, mitochondria, nucleus, peroxisome, plasma  to the cytoskeletal group (Alberts al., 1994).

membrane and vacuole, respectively. Note that the vacuole and chloroplast 3. For protein sequences with the same name but from

proteins exist only in a plant cell. different species, only one of them was included. After the
above screening procedures we obtained a dat8%etpf 12

Location classification categories that contains 2319 protein sequences, of which 154

According to their subcellular locations, proteins are classified® chloroplast proteins, 592 cytoplasmic, 37 cytoskeletal, 53
into the following 12 discriminative groups: (1) chloroplast, €ndoplasmic reticulum, 230 extracellular, 26 Golgi apparatus,
(2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum 38 lysosomal, 86 mitochondrial, 288 nuclear, 32 peroxisomal,
(5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochon-/58 plasma membrane and 25 vacuoles (column 2 of Table I).
dria, (9) nucleus, (10) peroxisome, (11) plasma membrane and 4- I order to observe the impact of the number of subcellular
(12) vacuole (Figure 1). Such a classification covers almodgcations considered on the prediction rate, two more datasets
all the organelles in an animal or plant cell (see, e.g., Albertdvere constructed. These two datasets$irand S (columns

et al, 1994: Lodishet al, 1995). Note that the vacuole and 4 and 6 of Table I, respectively), which were obtained by
chloroplast exist only in a plant cell. Membrane proteins sucisimply removing thfz small subsets frod¥. The dataset§’

as transmembrane and anchored-membrane proteins actuaf§S derived fromS** by removing the cytoskeleton, Golgi
reflect the protein types rather than subcellular locations. FoRPparatus, lysosome, peroxisome and vacuole subsets, none of
example, a membrane protein can be associated with tH&hich contains more than 50 proteinsStt. The datase®> was
membrane of endoplasmic reticulum, Golgi apparatus, lysoderived fromS’by further removing endoplasmic reticulum and
some or any other organelle enveloped by a lipid b“aye,mltoc_hon_drlazl subsets, none of which contains more than 100
structure. Therefore, if associated with endoplasmic reticulumProteins inS'2. , .
the membrane protein is located at the endoplasmic reticulum; - In order to test the consistency, three_corresponding

if associated with the Golgi apparatus, it is located at thdndependent datasets were constructed. TheySteS' and

Golgi apparatus; and so forth. Plasma membrane proteins ara (columns 3, 5 and 7 of Table I, respectively), none of which
located at the cell envelope (Figure 1). contains a protein that occurs in the datasts S’ and .

The classification was based on release 35.0 of SWISS- For the convenience of further study or practical application,
PROT (Bairoch and Apweiler, 1997). In order to obtain athe names of the 2319 proteins & are listed in Appendix
high-quality, well defined training set, the data were screeneg, from which the dataset§’ and $ can also be easily
strictly according to the following procedures: obtained. In this study, the datas&@®, § and S were used

1. Included are only those sequences with clear locationg®S the training datasets to predict the subcellular location of a
descriptions; those with ambiguous or uncertain words sucRrotein among the 12, seven and five categories of classifica-
as ‘location unspecified’, ‘probable’, ‘potential’ and ‘by simil- tion, respectively. Owing to limitations on space, the protein
arity’ were omitted. names in the datase®?, S and S are not given here, but

2. Sequences annotated by two or more locations are n&fey are available upon request.
included because of alack of uniqueness. For example, aprotein . )
sequence labeled with ‘Golgi and nuclear’ or ‘chloroplast orPrediction algorithm
mitochondria’ was omitted. Also note that secreted proteing-or brevity, let us use indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
should be assigned to the extracellular group and proteinand 12 to represent chloroplast, cytoplasm, cytoskeleton,
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Subcellular location prediction

endoplasmic reticulum, extracell, Golgi apparatus, lysosomeD?3(X, X¥) = (X = X)TCe{X - X%, € =1,2,3,...m
mitochondria, nucleus, peroxisome, plasma membrane and (6)
vacuole, respectively. We use, ® represent the chloroplast

subset consisting of only chloroplast proteins, tG represent WhereCg is the covariance matrix for subsét, given by
the cytoplasm subset consisting of only cytoplasmic proteins, RN ot

and so forth. 1172t 20

Suppose there afd proteins forming a se§, which is the C. — Cg,l Cg,z T 0320 7
union of m subsets, i.e. g . CoTe 7
s=6 UGgUGUGU...UGg, (1) Cgo,l Cgo,z T Cgo,zo
The size of each subset is given by(§ = 1, 2, 3, .. .,m) the superscripT is the transposition operatozr ai@k?! is the
wheren represents the number of proteins in the sulgget Inverse matrix ofCe. The matrix elements of;; in Equation
m 7 are given by
Obviously, N = %" n;. For example, for the dataset in 1
_ =1 e =———> X=X [xp-xF ] Gi=12 ..., 19)
Appendix A, we havem = 12, n; = 154,n, = 592, . . ' n—-1,-, " ’
ny = 758,n, = 25 andN = 23109. 8)

. The prediction algorithm is esta_blished base(_j on thg Correlaéecause the amino acid composition must be normalized, i.e
tion between the subcellular location of a protein and its aming, - ~ived b e
acid composition. Suppose the 20 amino acids are orderecﬁ0 y
alphabetically according to their single-letter codes: A, C, D, x& =1 —1 2 NeE=123 m 9
E,FRGH LKL MNPQR,ST,V,WandY. Thus, _Zlkvl » v 2, .. Ng & , 2,3, ...m), 9)
any protein inS will correspond to a vector or a point in we have (cf. Equation 8
the 20-D (dimensional) space, i.e. it can be described by (cf. Eq )

K.C.Chou, 1995 -
( ) >ci=0G=12...,20
X1 % (10)
g
X & _ —
X§= |.<,2 ,k=12,...n;8=1,23,...m (2 ZCi’j—O, i=12,...20
. i=1
Xizo Therefore,C; defined by Equation 8 is a singular matrix, and

its inverse matrixCg! must be of divergence and meaning-
where x¢,, x8,, . . ., xt,, are the normalized occurrence lessness. To overcome such a difficulty, one way is to reduce
frequencies of the 20 amino acids in tktk proteinX of the ~ the amino acid composition space from 20-D to 19-D by

subsetG;. Thestandard vectofor the subseG; is defined by ~ removing any one of its 20 components, as described by
K.C.Chou (1995). Another way is to use an eigenvalue—

>‘<§ eigenvector approach to calculate the Mahalanobis distance so
%& as to avoid dealing with any inverse matrix. According to the
X& = _2 ,€=1,2,3,...m) (3) eigenvalue—eigenvector approach (Chou and Zhang, 1995),
: Equation 6 can be written as
X30 20 1 2 2
DX, X¥) = — ¥ — X)W 11
where ( ) zz A jgl( = X)W (11)
1 n Where)\f, the eigenvalue, anth’j, the jth component of the
T Z Xi,i’ (=12 ...20). 4) eigenvector‘I‘iE, are given by the following equation:
M s Wi
SupposeX is a protein whose cellular location is to be : f ot : Wi, _
predicted. It can be either one of theproteins in the se6  Ce ¥ = A7 ¥y = A _ (i=12..,200 (12
or a protein outside it. It also corresponds to a poiit X, :
.. ., Xo0) in the 20-D space, whepg has the same meaning as LIJEZO

x5, but is associated with proteX instead ofX %. Hence, the
current algorithm can be formulated as follows.
The similarity between the standard vectsf and the

The second term of Equation 5 reflects the difference of
covariance matrices for different subsets, in whichis the
. : . . e ith eigenvalue of the covariance mat@ (i = 2, 3, 4, . . .,
g;cf);[r?g:jﬁ;sucu hg:%ctce::rr]lgﬁd(llggé?e covariant discriminant, as20), as defined by Equation 12. It cé?ls be proved (Appendix
' B) that for the covariance matri€; as defined by Equation
F(X, X%) = D¥X, X%) + In()\é )\g )\Z o 7\30) (5) 8, there is no negative eigenvalue. Actually, owing to Equa-
tion 10, C; must have one eigenvalue, denoted by,
where the first term is the squared Mahalanobis distancequalto zero (Chou and Zhang, 1995); all the other
between X¢ and X (Mahalanobis, 1936; Pillai, 1985; 19 eigenvalues\, A, . . ., A3, are generally greater than
K.C.Chou, 1995): zero. Incorporation of the term IM\E A§ A5 . . . A%y into
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Table Il. Self-consistency test results for the 2319 proteins in Appendix A Table Ill. Overall rates of correct prediction by self-consistency, jackknife
and independent dataset tests

Rate of correct prediction for each subcellular location
Methods (1) Chloroplast (2) Cytoplasm (3) Cytoskeleton (4) Endoplasmic ret. >
Self-consistency test
This paper Dataset®
(eq.13) i =T40% M =1755% 2 =89.2% £ -793%

Algorithm S12 S7 S°
ey Thi 13 B _799% LZ=800% 12 =83.1%
(Cedano et al., ) 1S paper (eq. ) 2315 = 19.9% 5151 =80.0% 555, = 1%
1997) o =429% B2 =307% £ =405% & =50.9%

ProtLock

1065 _ 1233 _ 1423 _

(Cedano et al., 1997) e =45.9% £ =571% 32 =1704%

Rate of correct prediction for each subcellular location
(5) Extracellular  (6) Golgi  (7) Lysosomal (8) Mitochondrial (9) Nuclear

19 _691%  2=100% 2 =100% £o791% B =711% Jackknife test

Dataset®
. : 7
S_983% B =500% Z=632% £o503% 18 =542% Algorithm s S S°
s 1586 _ 18579 _ 1584 _
This paper (eq.13) 215 = 68.4% 5 =T3.1% 305, =18.3%
Rate of correct prediction for each subcellular location Overall rate of ProtLock 1017 1201 1405
(10) Peroxisomal (11) Plasma membrane (12) Vacuole correct prediction (Ceda.no et al., 1997) 2319 — 43.9% 2161 — 55.6% 2022 — 69.5%
2 =100% %7 = 85.4% 2 =96.0% 1852 = 79.9%
Independent-dataset test?
1 =344% %5 = 59.8% 2 =32.0% 150 = 45.9% Dataset?
Algorithm 512 57 EE
: 1966 _ 1948 _ 1833 _
This paper (eq.13) 2o = 19.9% 5255 =T1.5% o0 =81.8%
ProtLock

the discriminant function is important, especially when the
subset sizes in the training dataset are much different (Cho
et al, 1998). It is due to the second term that the covariant
discriminantF as defined by Equation 5 is no longer a distance:See Table I. _ o _ _
because it does not satisfy the COI’]ditiOI’F()XXE) = 0 when _'Il'gm(e_7subcze_sllsular Iocatlons of proteins in the independent testing datasets
X = YE, and also it may have a negative value, obviously inS ) S and werle2 pr7ed|cted using thg rule parameters der_lved_ from the

; ° ! Ve o . " Mhraining dataset§!?, S’ and S, respectively. The same protein did not occur
conflict with the classical definition that a distance must satisfyn both training and testing datasets.
positivity, symmetry and the triangular inequality. Accordingly,
the prediction rule is formulated by Results and discussion

A = Mi Y1 X2 3 X The prediction quality was examined by two test methods, the
FOX, X% = Min {F(X, X5, FO$ X9, FXG X, - FXG X self-consistency test and the jackknife test. In the self-consist-
(13) ency test, the subcellular location for each of the proteins in a
givendataset was predicted using the rules derived from the same
ataset, the so-called development dataset or training dataset. In
jackknife test, each proteinin the training dataset was singled
out in turn as a ‘test protein’ and all the rule parameters were
determined from the remaining — 1 proteins. Jackknife tests
are thought one of the most effective and objective methods for
foss-validation in statistics (Mardé al., 1979).
Listed in Table Il are the self-consistency test results for
scriminating the 12 subcellular locations of proteins in the
atasetS'? (Appendix A) by using the covariant discriminant
Igorithm (Equation 13) and ProtLock algorithm (Cedanal.,
997), respectively. For a detailed prediction process by the
urrent algorithm, see Appendix C, where the covariant dis-
riminant values calculated according to Equation 5 for the 37
roteins in the cytoskeleton subset and their predicted results
re given as a demonstration. As can be seen from Table II, the
verall rate of correct prediction by the current algorithm is 30%

(Cedano et al., 1997) 1086 — 40.0% 1278 = 50.7% 128 — 68.2%

whereA can be 1, 2, 3, . . m, and the operatoMin means
taking the least one among those in the parentheses and t
superscriptA is the subcellular location predicted for the
protein X. If there is a tie case) is not uniquely determined,
but that did not occur in our datasets.

The eigenvalue—eigenvector approach and the 19-D spa
approach should give the same results. It is instructive to poin
out that, if using the 19-D space approach, the covarian&1i
discriminant value as defined by Equation 5 will be the samej
regardless of which one of the 20 amino acid components i
left out for constructing a 19-D space. This can be elucidate
as follows. The covariant discriminant of Equation 5 consistsc
of two terms. The first term is the squared MahalanobisC
distance and its invariability has already been proved by
theorem given by K.C.Chou (1995). The second term is
logarithm, and its argument is actually equal to the determinal

value of the matrix obtained by deleting the 20th row andh- ;
) : igher than that by the ProtLock algorithm (Cedatal., 1997).
cz)?tl? (c:o(I:uhrrc;E f(TQnSSt;]esﬁﬁrZ:getAeinS]?nog? \?aﬁuEeq\L/Jvaotllﬁg 'rAelrrZai Similar calculations were also carried out for the dat&end
o ' . Furthermore, a jackknife test by the current algorithm and

the same regardless of which row and column were remove e ProtLock algorithm was performed for each of these three

from C; as long as the removed row and column were the .. cets The results obtained are summarized in Table 111, from
same in order. This indicates the invariability of the secon hich the following can be observed

term, and hence also the invariability of the covariant dis-
criminant of Equation 5. 1. The overall rates of correct prediction obtained by the
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current algorithm using the jackknife and self-consistency testathm (Nakashimaet al.,, 1986). Both of these algorithms were
for datasetS!? were 68.4 and 79.9%, respectively. Imagine: if developed for predicting the structural class of a protein accord-
the samples of proteins are completely randomly assigneihg to its amino acid composition, and hence can be directly
among m possible subsets, the rate of correct assignmerapplied to predicting the protein subcellular locations based on
would generally be I if the random assignment is weighted the same datasets as used here. It was found that for the case of
according to the sizes of subsets, then the rate of corred2 subcellular locations, the overall rates of correct prediction
prediction would bep? + p3 + p% + . .. + p3, where byusingthe leastcity-block distance algorithm (P.Y.Chou, 1980,
m 1989) for the self-consistency, jackknife and independent dataset
P = ni/ > ng = n/N (see Equation 1 and the relevant text). tests were 47.9, 46.4 and 45.4%, respectively, and the corres-
g ponding rates by the least Euclidean algorithm (Nakaskirah,
Hence the correct rate by a completely random assignment fdr986) were 48.1, 46.7 and 46.6%. Compared with these results,
a classification of 12 categories would be 1/428.3%, and the overall rates of correct prediction by using the current algo-
the corresponding rate by the weighted random assignmemithm are about 22—32% higher.
would be (154/231%) + (592/2319% + (37/2319% + (53/
23197 + (230/23193 + (26/2319% + (38/2319% + (86/ The current algorithm was also used to test the dataset studied
23197 + (288/2319% + (32/2319% + (758/23193 + (25/ by Nakai and Kanehisa (1991). From Gram-negative bacteria
2319% ~ 20.5%, provided one uses the number of proteins ithese authors extracted 106 proteins, of which 34 are inner
each subcellular location as given in Appendix A to represenfnembrane proteins, 21 periplasmic proteins, 22 outer membrane
the size of each subset. Therefore, the rates of correct predictigtioteins and 29 cytoplasmic proteins (see Table 1 in Nakai and
obtained by using the covariant discriminant algorithm in bothKanehisa, 1991). According to their report, the self-consistency
the self-consistency and jackknife tests are much higher thaly using the expert system to predict the localization sites of the
the corresponding completely randomized rate and weighted06 proteins was 83%. No cross-validation was performed in
randomized rate, implying that the cellular location of a proteintheir study. For the same database, when using the ProtLock
is considerably correlated with its amino acid composition. algorithm (Cedancet al, 1997), the corresponding rate was
2. When the number of subcellular locations considered wa85%. However, when using the current algorithm, the corres-
reduced from 12%'?) to seven §) and five &) by excluding  ponding rate was 99%, further indicating its power.
small subsets (see Table 1), the corresponding rates were To demonstrate its power further, the current algorithm was
increased to 73.1 and 80.0% and 78.3 and 83.1%, respectiveBIs0 used to test the dataset recently studied by Reinhardt and
This indicates that the prediction quality can be substantialljHubbard (1998). After discarding those groups in which the
improved if one can (i) narrow down the scope of subcellularamount of data available is too small for statistical analysis,
location for a query protein according to its source and othethese authors classified 997 prokaryotic proteins into three
relevant information (e.g. if a query protein is from an animaldifferent subcellular locations: 688 cytoplasmic, 107 extracellu-
organism, one can exclude the chloroplast and vacuole subséé and 202 periplasmic proteins. Within each group none had
from consideration and the prediction will be made among 10>90% sequence identity with any other. According to their
possible subcellular locations instead of 12); and (ii) improvereport, for such a dataset the rate of correct prediction by them
the training data of small subsets by adding into them morgising the neural network method for a subsampling test was
new proteins that have been found belonging to the location81%. This is the highest accuracy rate so far reported for a
defined by these subsets. cross-validation test in protein cellular location prediction.
3. As a demonstration of a practical application, predictiondNow for the same dataset, when using the discriminant function
were also performed for the three independent dat&ét§’  algorithm to perform prediction, we found that the rate of
and$S® using the rule parameters derived from the dataS€fs  correct prediction was 91% by self-consistency test and 86%
S’ and S, respectively. The overall rates of correct predictionby jackknife test; both are considerably higher than 819%.
thus obtained are also given in Table Ill, from which it canFurther, in their subsampling procedure, only a very small
be seen that the rates of correct prediction by the currerfraction of the possible divisions were investigated (Chou and
algorithm are in the range 75.9-81.8%, fully consistent withElrod, 1998), and the results thus obtained would certainly
the results obtained by the self-consistency and jackknife testbear considerable arbitrariness. Actually, compared with the
4. No matter whether the self-consistency test, the jackkniféimited subsampling test, the jackknife test is much more
test or the independent dataset test is used, the overall ratebjective and rigorous (Mardia, 1979). Accordingly, from both
of correct prediction obtained by the current algorithm arethe percentage of correct prediction and the rationality of
significantly higher than those obtained by the ProtLockcross-validation, a higher prediction quality can be obtained
algorithm (Cedanet al., 1997). For the case of five subcellular by using the current algorithm.
locations, the rates of correct predictions by the current That the current algorithm can lead to the best prediction
algorithm are 8.8—-13.6% higher, for seven subcellular locationguality is because it takes into account the coupling effect
17.5-26.8% higher and for 12 subcellular locations 24.5-among different amino acid components, which is a kind of
35.9% higher. The above data also clearly indicate that theollective interaction, as formulated by a set of covariance
greater the number of subcellular locations considered, thmatrices in Equation TC¢(§ = 1, 2, . . .,m), that is the core
more significant the improvement of prediction quality would of the current algorithm. It is through each of these matrices
be by using the current algorithm. In other words, the covarianthat a more reasonable statistical distance (K.C.Chou, 1995;
discriminant algorithm is particularly powerful when used to Chou and Zhang, 1995), the Mahananobis distance, in the
deal with a classification with many possible categories. amino acid composition space is defined (see the first term of
5. The comparison of prediction quality was also extended td&equation 5), and it is through the eigenvalues of these matrices
cover other algorithms, such as the least city-block distancthat the coupling effects in different subsets as well as their
algorithm (P.Y.Chou, 1980, 1989), and the least Euclidean algcsizes are reflected (see the second term of Equation 5). It
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Table IV. The standard vector derived from the training dataset of Appendix A for each of the 12 protein subcellular locations

Subcellular location of proteins
Chloro- Cytop- Cytoske- Endoplasmic Extra- Golgi Lyso- Mitochon- Nuc- Peroxi- Plasma  Vacuo-

plast  lasmic letal reticulum  cellular apparatus some drial lear some membrane lar
Amino acid X! X? X3 X4 X5 X6 X7 X8 X° X1 X1 X12
code Components of the standard vector (normalized to 1)
A 0.086 0.079 0.078 0.068 0.080 0.063 0.070 0.084 0.083 0.086 0.080 0.074
C 0.016 0.015 0.014 0.017 0.020 0.016 0.023 0.013 0.015 0.013 0.020 0.023
D 0.052 0.058 0.055 0.063 0.053 0.056 0.052 0.039 0.046 0.056 0.036 0.058
E 0.064 0.072 0.096 0.075 0.053 0.070 0.049 0.048 0.064 0.059 0.043 0.065
F 0.038 0.041 0.030 0.046 0.040 0.043 0.044 0.050 0.029 0.041 0.059 0.041
G 0.071 0.075 0.049 0.064 0.077 0.058 0.080 0.075 0.066 0.077 0.068 0.076
H 0.016 0.024 0.021 0.028 0.022 0.020 0.025 0.020 0.026 0.024 0.019 0.025
1 0.056 0.059 0.047 0.053 0.049 0.061 0.045 0.060 0.036  0.060 0.073 0.047
K 0.064 0.064 0.086 0.070 0.058 0.062 0.046 0.062 0.075 0.066 0.042 0.056
L 0.086 0.093 0.089 0.092 0.083 0.098 0.097 0.099 0.080 0.088 0.113 0.078
M 0.025 0.025 0.022 0.020 0.021 0.027 0.022 0.028 0.022  0.020 0.030 0.018
N 0.041 0.040 0.046 0.041 0.053 0.048 0.049 0.040 0.044 0.044 0.037 0.059
P 0.050 0.047 0.043 0.048 0.049 0.043 0.061 0.047 0.072  0.051 0.044 0.042
Q 0.033 0.036 0.055 0.038 0.042 0.045 0.040 0.038 0.051 0.036 0.030 0.047
R 0.050 0.049 0.056 0.044 0.039 0.046 0.040 0.048 0.058 0.048 0.044 0.037
S 0.085 0.058 0.077 0.063 0.077 0.078 0.077 0.075 0.096 0.065 0.073 0.080
T 0.055 0.052 0.053 0.051 0.061 0.059 0.054 0.062 0.053  0.052 0.057 0.053
v 0.075 0.070 0.054 0.067 0.071 0.067 0.062 0.065 0.048 0.071 0.078 0.070
w 0.010 0.013 0.007 0.015 0.015 0.010 0.023 0.015 0.008 0.012 0.018 0.012
Y 0.027 0.032 0.022 0.036 0.038 0.030 0.042 0.035 0.028 0.031 0.035 0.039

should be pointed out that although the ProtLock algorithm
(Cedanoet al, 1997) also contained a covariance matrix, it "'y T-*-£.
did not reflect the special character for each of the individua ¥ 1;

subsets. Particularly, in the ProtLock algorithm, a critical term, T/~ _f= {1,
i.e. the second term of Equation 5, was completely mlssec5
For a detailed discussion of this aspect, see Appendix C Y
where two important differences between the current algorithn Q‘;
and ProtLock are illustrated.

To show the difference in amino acid compositions that
distinguish the subcellular locations of proteins, the 20-D
standard vector derived from the proteins in the training datase
of Appendix A for each of the 12 subcellular locations is
given in Table IV. Further, to provide an intuitive picture, each
such 20-D standard vector is projected on to a 2-D rada
diagram as given in Figure 2. In addition, the 19 positive
eigenvalues for each of the 12 corresponding covarianc
matrices (see Equations 7 and 12) are given in Table V the (7 v A ¢
might be of use for investigating the component-couplec |
effects at a deeper level, especially for understanding th _ /
important contribution from the second term of Equation 5 as |
illustrated in Figure 3. This is a vitally important term for
dealing with the case where the sizes of subsets are differer
However, such an important term and also the denominatc

n; — 1 in Equation 8 were not included in the original least
Mahalanobis distance algorithm (K.C.Chou, 1995), althougtiif,, E.-l_F o

good results were still obtained because the case studied the 1;5{ s SE

consisted of subsets with the same size. It is very importar 1~ e AP
to realize this, otherwise the prediction algorithm might be &7 19
misused, leading to poor results and an incorrect conclusior & M

as elaborated in a recent paper (Cledwal.,, 1998).
Conclusion Howm b

The idea of predicting the subcellular location of a proteinFig. 2. Radar diagrams to show the difference of the 20-D standard vectors,
accordingtoitsamino acid composition is based on the following.e. the average amino acid compositions for the proteins in the following

rationale. (i) Different compartments of a cell usually havesubcellular locations: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton,
different phySIO chemical environments which might be Verygll) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome,

8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and
sensitive in selectively accommodating a protein according t@12) vacuole. Amino acids are denoted by their single-letter codes (see

its structural feature, particularly its surface physical chemistryrable Iv).
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Subcellular location prediction

Table V. The 19 positive eigenvalues of the covariance matrix derived from the training dataset of Appendix A for each of the 12 protein subcellular
locations

Subcellular location
Chloro- Cytop- Cytoske- Endoplasmic Extra- Golgi Lyso- Mitochon- Nuc- Peroxi- Plasma  Vacuo-

plast  lasmic letal reticulum  cellular apparatus some drial lear some membrane lar
Order Al Y 23 ¢ AP 2$ A N N A0 AR A2
i Eigenvalues x10°
2 04 0.6 0.1 0.4 1.0 0.01 0.3 0.9 0.6 0.1 0.5 0.1
3 3.0 5.9 0.4 2.1 6.1 0.3 0.8 3.9 3.2 0.6 6.4 0.3
4 5.3 6.6 0.9 2.7 9.9 0.8 1.3 5.5 8.6 1.0 7.2 1.1
5 6.7 8.7 2.2 5.0 11.2 1.2 2.2 7.5 10.2 1.1 7.5 2.1
6 74 9.7 2.7 5.3 14.9 2.5 2.9 8.4 13.7 1.2 8.2 3.2
7 9.1 11.6 3.4 7.3 18.6 4.3 3.8 10.8 13.9 1.8 9.4 3.8
8 11.7 13.1 4.6 8.3 20.0 5.6 4.9 13.8 16.2 3.4 11.5 6.5
9 12.3 13.6 5.7 114 23.2 7.3 5.9 16.4 19.8 3.9 11.8 7.8
10 14.1 14.9 9.1 11.9 24.5 9.1 7.1 20.9 28.5 4.8 12.6 11.2
11 18.2 18.1 14.2 13.0 29.5 12.6 9.9 22.7 29.9 6.0 16.9 12.8
12 18.4 19.5 17.6 21.1 34.7 13.8 10.1 29.9 32.8 7.1 17.1 14.9
13 22.8 22.2 19.5 24.9 40.7 18.2 15.0 34.2 48.6 9.9 184 22.7
14 33.0 27.6 33.1 28.6 45.9 26.6 18.1 36.2 66.3 12.3 21.6 35.7
15 36.5 29.7 41.5 50.6 53.8 34.9 23.2 41.8 77.4 14.9 28.5 54.3
16 38.2 33.1 54.8 52.9 76.2 49.2 27.9 49.0 87.6 26.4 31.0 99.5
17 45.6 36.6 69.6 66.4 80.4 65.5 36.0 64.5 106.0  33.0 35.6 142.9
18 54.7 57.4 108.9 86.6 118.8 101.9 48.0 85.8 1394  45.0 80.4 204.9
19 82.4 86.9 1724 115.0 121.7 110.7 73.7 101.9 239.2 924 90.6 241.9
20 117.5 122.3 329.1 220.0 200.3 209.7 206.2 166.0 462.2 108.4 127.7 472.4
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Fig. 3. Histograms to show the contributions oflri()\g )\i C )\go) from different subsets to the covariant discriminant function of Equation 5. As can be
seen, the heights of the 12 histograms are considerably different. Only when the heights are the same can the second term of Equation 5 be omitted from tf
prediction algorithm.

character. (ii) The structural class of a protein, one of the mog®r A.Reinhardt for providing their datasets for testing the covariant discrimin-
basic structural features, is correlated with its amino acid com2nt agorithm and to Raymond B.Moeller, Cynthia A.Ludlow and Diane
it ’ . . _..._M.Ulrich for drawing the figures.
position, as reflected by many encouraging reports of predicting
the former based on the latter alone (see, e.g., P.Y.Chou, 1980;
Klein and Delisi, 1986; Nakashineal., 1986; K.C.Chou, 1995; References
Chou and zZhang, 1995; Baher al.,, 1997). (iii) The character Alberts,B., Bray,D., Lewis,J., Raff,M., Roberts,K. and Watson,J.D. (1994
g
of a protein surface, whichis directly exposed to the environment Molzcular rEiiology of the Cell3rd edn. Garland Publishing, New York,
; ; ; London, Ch. 1.
Oface”u'.ar compar_tr_nent, is also .Vgry likely (.:O”elated with theAndrade,M.A., O’Donoghue,S.I. and Rost,B. (1998) Mol. Biol, 276,
amino acid composition because it is determined by a sequencex;7_gos5
fold_lng process during whl_ch the interaction among d|ffere.nt|3ahar,|,, Atilgan,A.R., Jernigan,R.L. and Erman,B. (19FFipteins 29,
amino acid components might also play an important role. (iv) 172-185. _ o
The above correlations suggest that the total amino acid compoé(ff:ﬁ'(;“hvﬁ*- 3/‘:"0' Alfw,ﬁgrg‘- (1“3915‘U°'§'° AC'dISEReiggY?’:A‘:’;GB oL 26
tion might carry a ‘signal’ that identifies the subcellular location. =g, G ~o¥T Ferons-~A. an Querol,E. (199F)Mol. Biol, 266
(V) C_ompared W'th the existing algf)”tth, the covariant diS-Chou,k.C. (1995proteins: Struct. Funct. Gene1, 319-344.
criminant algorithm proposed in this paper can give the besthou,K.C. and Elrod,D.W. (1998Biochem. Biophys. Res. Commu252,

prediction quality for the protein subcellular location. 63-68. _ _
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Appendix A
List of the 2319 proteins located in 12 different subcellular locations, with codes according to the SWISS-PROT data bank

(1) 154 clﬂoroplast proteins

ACCA_ANTSP ACP1_CUPLA ACP2_CUPLA ACP3_CUPLA ACP4_CUPLA AKH1_MAIZE AKH2_MAIZE ALFC_SPIOL ALFD_PEA ARO1_TOBAC
AROA_ARATH AROC_CORSE AROF_ARATH AROG_ARATH AROL_LYCES BCCP_PORPU BGLC_MAIZE CAHC_ARATH CH10_SPIOL CHMU_ARATH
CLAA_LYCES CLAB_LYCES CLPA_PEA CLPC_ODOSI CRTI_ARATH CYP4_ARATH CYSL_ARATH DAP1_WHEAT DAP2_WHEAT DAPA_MAIZE
DHAB_ATRHO DPEP_SOLTU EFGC_SOYBN EFTS_GALSU EFTU_ARATH ELI5_HORVU ELI6_HORVU ELI9_HORVU ELI_PEA F16P_ARATH
FABB_ARATH FABG_ARATH FABH_ARATH FABI_BRANA FER1_DUNSA FER2_DUNSA FER3_MAIZE FERS5_MAIZE FER_ARATH FRI2_MAIZE
FRI_PEA FTRC_MAIZE FTRD_SPIOL FTRV_SPIOL G3PA_ARATH G3PB_ARATH G6PI_CLAUN GGPP_ARATH GLB1_CHLEU GLB2_CHLEU
GLG1_BETVU GLG2_SOLTU GLG3_SOLTU GLGS_HORVU GLN2_HORVU GLN4_PHAVU GLNC_MAIZE GLSF_ANTSP GSA_ARATH HEM1_ARATH
HEM2_SELMA HEMZ_ARATH HISX_BRAOC HO_PORPU HS2C_ARATH HS7S_PEA IF2_PORPU IF3C_EUGGR ILVS_ARATH KADC_MAIZE
LEU3_BRANA MAOC_FLAPR MDHC_FLABI MDHD_SORVU METC_ARATH ODPA_PORPU ODPB_PORPU PGKH_CHLRE PHS1_SOLTU PHS2_SOLTU
PHSL_IPOBA PLSB_CUCMO PMGI_ANTSP PODK_FLATR PPOA_LYCES PPOB_LYCES PPOC_LYCES PPOD_LYCES PPOE_LYCES PPOF_LYCES
PPO_MALDO PSY1_LYCES PSY_ARATH PUR1_SOYBN PUR3_ARATH PUR5_ARATH RBL_ABIMA RBSO_SOLTU RBS1_ACEME RBS2_ARATH
RBS3_ACECL RBS4_ACECL RBS5_ACECL RBS6_LEMGI RBS8_NICPL RBSA_SOLTU RBSB_SOLTU RBSC_SOLTU RBSX_TOBAC RBS_ANTSP
RCA_ARATH RK15_ARATH RK18_PEA RK22_MEDSA RK24_PEA RK40_SPIOL RK9_ARATH RO28_NICSY RO30_NICPL RO31_ARATH
RO33_NICSY RR13_ARATH RR17_ARATH RR30_SPIOL RUB2_BRANA RUBA_PEA RUBB_ARATH S17P_ARATH SECA_ANTSP SODF_SOYBN
SODP_LYCES SR5C_ARATH STAD_BRANA SYFB_PORPU SYH_PORPU THD1_LYCES THIF_PEA THIM_PEA THIO_CYACA TPIC_SECCE
UCRA_TOBAC UCRB_TOBAC UCRI_CHLRE UGST_HORVU

(2) 592 cytoplasmic proteins

143F_BOVIN 143G_BOVIN 3HAO_HUMAN 305B_HUMAN 5NTC_HUMAN AACA_STAAU AAT1_MEDSA AATC_BOVIN AAT_ECOLI ABFA_STRLI
ABL1_HUMAN ABL2_HUMAN ABL_DROME ACEA_CORGL ACEK_ECOLI ACKA_CLOTS ACLY_HUMAN ACOC_ARATH ACT1_FUGRU ACT2_FUGRU
ACT3_BOMMO ACTS5_CHICK ACT8_XENLA ACTA_CHICK ACTB_CRIGR ACTG_HUMAN ACTH_HUMAN ACYl_HUMAN ADH1_ALLMI ADH2_HORVU
ADH3_COTJA ADH6_HUMAN ADH7_HUMAN ADHA_HUMAN ADHB_HUMAN ADHE_HORSE ADHG_HUMAN ADHI_RHOSH ADHP_HUMAN ADHS_HORSE
ADHX_HORSE ADH_FRAAN ADI_ECOLI ADO_BOVIN ALAT_HUMAN ALDR_BOVIN ALF1_PEA ALF2_PEA ALF_ARATH ALKH_BACSU
ALKK_PSEOL AMOH_ARTGO AMPL_ARATH AMPN_LACHE AMY1l_DICTH AMY2_DICTH AMY3_DICTH APT1_ARATH APT2_YEAST APT_CRILO
APX1_ARATH ARGI_HUMAN ARGJ_CORGL ARI1_PENRO ARY1l_HUMAN ARY2_HUMAN ARY3_MOUSE ASGl_ECOLI ASPG_BACLI ASRB_SALTY
ASRC_SALTY ATDA_HUMAN ATEl_YEAST BAXB_HUMAN BAXC_HUMAN BCAT_CAEEL BGLB_MICBI BIEA_HUMAN BLMH_RAT BNC2_RAT

BODG_PSESK BTUR_ECOLI BUP_RAT BVIC_BETVE C1TC_HUMAN CAFA_ECOLI CAH1_HORSE CAH2_BOVIN CAH3_HORSE CAIB_ECOLI
CAN1_HUMAN CAN2_CHICK CAN3_HUMAN CANX_CHICK CAN_DROME CAP1_FLAPR CAP2_FLATR CAP3_SORVU CAPP_AMAHP CARA_YEAST
CARB_TRICU CATA_MICLU CATR_PSEPU CATT_YEAST CBS_RAT CC2H_PLAFK CFA1_MYCTU CFA2_MYCTU CFA_ECOLI CGL_HUMAN

CHEA_ECOLI CHEB_ECOLI CHLR_HUMAN CHMU_BACSU CILA_ECOLI CILB_ECOLI CKI1_SCHPO CKI2_SCHPO CNTF_CHICK COAl_HUMAN
COA2_HUMAN COAC_CHICK COBO_PSEDE CSCA_ECOLI CSW_DROME CTK_HUMAN CYAA_AERHY CYG1_BOVIN CYG2_RAT CYG3_BOVIN
CYG4_HUMAN CYG5_HUMAN CYP4_BOVIN CYPB_ECOLI CYPC_ECOLI CYPH_BLAGE CYS3_YEAST CYSE_ECOLI CYSK_SPIOL DAPD_ACTPL
DBDD_HUMAN DCK_HUMAN DCP_ECOLI DCUP_HUMAN DDLA_ECOLI DDLB_ECOLI DEOC_BACSU DEXB_STRMU DHA6_YEAST DHAC_BOVIN
DHAP_HUMAN DHAR_RAT DHAS_MOUSE DHA_BACSH DHB1_HUMAN DHCA_HUMAN DHGY_METEX DHQU_HUMAN DHQV_HUMAN DIDH_RAT
DLD1_BACST DLD2_PSEPU DLD3_PSEPU DLDH_ALCEU DLTA_LACCA DPS1_PINST DPS2_PINST DPSS_PINSY DPYD_HUMAN DUS6_HUMAN
DYHC_CAEEL DYL1_HUMAN E4PD_ECOLI EF10_XENLA EF1C_PORPU ENO1_ENTHI ENO2_MAIZE ENOA_ANAPL ENOB_CHICK ENOG_HUMAN
ENO_ARATH ENP2_BACSH EPSC_BURSO ERG8_YEAST EXOA_BACSU F16Q_BETVU F3ST_FLABI F4ST_FLACH FABA_ECOLI FABB_ECOLI
FACC_HUMAN FAD1_YEAST FKB1_BOVIN FKBP_CANAL FPPS_ARATH FTDH_RAT FTHC_HUMAN FUCI_ECOLI FUMC_BRAJA G3P1_AGABI
G3P2_AGABI G3P3_ANAVA G3PC_ANTMA G3PX_HORVU G3P_ASPNG G6P1_CLALE G6P2_CLALE G6PA_BACST G6PB_BACST G6PI_ARATH
GAL_PSEFL GAPN_MAIZE GCY_YEAST GGPP_NEUCR GLB1_SCAIN GLMS_BACSU GLMT_RAT GLN1_ALNGL GLN2_BRAJA GLN3_HORVU
GLN4_MAIZE GLNS5_MAIZE GLNA_AGABI GLPD_BACSU GLYA_ACTAC GLYC_HUMAN GNO_GLUOX GPDA_DROME GPP1_YEAST GPP2_YEAST
GSHC_BOVIN GSHR_ANASP GTAl_HUMAN GTA2_HUMAN GTA3_CHICK GTA_PLEPL GTC1_RAT GTC2_RAT GTC_MOUSE GTH_SILCU
GTM1_HUMAN GTM2_CHICK GTM3_HUMAN GTM4_HUMAN GTMS_HUMAN GTMU_CAVPO GTS_OMMSL GTT1_CHICK GTT2_HUMAN GT_ECOLI
GUAA_HUMAN HEM6_ECOLI HEMG_BACSU HGXR_TOXGO HMC6_DESVH HMCS_CHICK HMT_HUMAN HOSC_YEAST HOXF_ALCEU HOXH_ALCEU
HOXU_ALCEU HOXY_ALCEU HPRT_BACSU HXKG_ECOLI I1BC_HUMAN IADA_ECOLI ICE6_HUMAN ICE7_HUMAN IDE_HUMAN IDHC_RAT
IDH_SYNY3 IFEA_HELAS IFEB_HELAS IFE_BRALA IFRH_MAIZE INO1_ARATH INVA_ZYMMO IPPI_SCHPO IPYR_BACP3 IREB_MOUSE
ISP1_BACSU ISPA_BACST ITK_HUMAN JNK3_HUMAN KAD1_BOVIN KAD_BACST KC1A_BOVIN KC1B_BOVIN KC1D_HUMAN KCOT_HUMAN
KCRB_CANFA KCRM_CANFA KDSA_CHLPS KICH_HUMAN KIME_HUMAN KKA4_BACCI KPYC_SOLTU KRB1_VACCC LB4D_PIG LEU3_AGRTU
LIK1_HUMAN LIK2_HUMAN LIPA_ECOLI LKHA_CAVPO LON1_BACSU LON2_MYXXA LON_BACBR LOX1_ARATH LOX2_BOVIN LOX3_PEA
LOX4_SOYBN LOXS5_HUMAN LOXA_LYCES LOXB_LYCES LOXL_MOUSE LOXP_MOUSE LOXX_SOYBN LPCA_ECOLI LPLA_ECOLI MALQ_ECOLI
MALZ_ECOLI MANA_YEAST MAOX_ANAPL MASY_CORGL MCH_METTH MDHC_ECHGR MEPD_HUMAN METB_ECOLI METC_BORAV METH_HUMAN
METK_ECOLI MLER_LACLA MT17_YEAST MTD1_YEAST MURF_ECOLI NAT1_YEAST NCK_HUMAN NDKC_DICDI NDK_BACSU NEUA_ECOLI
NIRD_ECOLI NMT_AJECA NNMT_HUMAN NODA_AZOCA NODB_AZOCA NRDG_ECOLI 016G_BACCE OAT_EMENI OMP_HUMAN OTC1l_ECOLI
OTC2_BACSU OTCA_MYCBO OTCC_CLOPE OTC_HAEIN P2A1_ARATH P2A2_ARATH P2A3_ARATH P2A4_ARATH P2AA_CHICK P2AB_HUMAN
PA1F_HUMAN PAl1S_HUMAN PCP_BACAM PDXK_HUMAN PE2R_RABIT PEPC_LACHE PEPE_ECOLI PEPT_BACSU PEPX_LACLA PFLA_CLOPA
PFLB_ECOLI PFPN_ENTHI PGDH_HUMAN PGF2_BOVIN PGFS_BOVIN PGK1_TRYCO PGKB_CRIFA PGKC_ALCEU PGKE_TRYBB PGKP_ALCEU
PGKY_TOBAC PGK_BACME PGM1_YEAST PGM2_YEAST PH2M_TRICU PHAB_ACISP PHBB_ALCEU PHBC_ALCEU PHEA_ECOLI PHHC_PSEAE
PHSH_SOLTU PIMT_ARATH PKN5_MYXXA PLSI_HUMAN PLSL_HUMAN PMGI_MAIZE PMM1_HUMAN PMM_CANAL PNPA_BACSU PNP_ECOLI
POLO_DROME PP11_YEAST PP12_DROME PPlA_HUMAN PP1G_HUMAN PPAC_BOVIN PPAL_SCHPO PPCC_CHICK PPCE_HUMAN PPCK_UROPA
PPV_DROME PRCA_METJA PRCB_METJA PROB_BACSU PROC_ARATH PT1A_ECOLI PT1_ALCEU PTCA_ECOLI PTCB_ECOLI PTFA_BACSU
PTFB_BACSU PTGA_ECOLI PTHA_ECOLI PTH_ECOLI PTI8_HUMAN PTI9_HUMAN PTKA_ECOLI PTKB_ECOLI PTLA_LACCA PTMA_ENTFA
PTN2_HUMAN PTN6_HUMAN PTN8_MOUSE PTNA_ECOLI PTNB_HUMAN PTNC_HUMAN PTP1_YEAST PTP2_YEAST PTP3_DICDI PTRA_KLEPN
PTRB_KLEPN PTWB_ECOLI PTWX_ECOLI PUA2_MOUSE PUR4_YEAST PYC1_YEAST PYC2_YEAST PYC_PICPA PYP1_SCHPO PYP2_SCHPO
PYP3_SCHPO PYR1_DICDI PYRD_YEAST QOR_CAVPO RET3_BOVIN RET4_HUMAN RFFE_ECOLI RIMI_ECOLI RIMJ_ECOLI RIML_ECOLI
RIP3_MAIZE RIP9_MAIZE RIR1_HUMAN RIR2_HUMAN RNB_ECOLI RNC_BACSU RND_ECOLI RNE_ECOLI RURE_ACICA SAHH_HUMAN
SAOX_ARTSP SBMC_ECOLI SCRB_KLEPN SDHL_HUMAN SERC_ECOLI SHC_HUMAN SLYD_ECOLI SOD1_ORYSA SOD2_ORYSA SOD4_MAIZE
SOD5_MAIZE SODC_ACTPL SODD_XENLA SODF_SULSO SOXA_CORSP SOXD_CORSP SOXG_CORSP SPRE_HUMAN SRPH_SYNP7 ST20_YEAST
SUAR_RAT SUDY_RAT SUH1_MOUSE SUH2_MOUSE SUH3_RAT SUHA_HUMAN SUHB_CAVPO SUHS_RAT SUO3_RAT SUO6_RAT
SUCE_BOVIN SUOT_MOUSE SUP1_HUMAN SUP2_HUMAN SUPM_HUMAN SUPP_BOVIN SYAC_YEAST SYA BARBA SYC_BACSU SYDC_YEAST
SYD_ECOLI SYEC_YEAST SYE_AZOBR SYFA_BACSU SYFB_BACSU SYF_METJA SYGA_BACSU SYGB_BACSU SYG_CHLTR SYH1_SYNY3
SYH2_SYNY3 SYH_ECOLI SYIP_STAAU SYI_CAEEL SYK1_ECOLI SYK2_ECOLI SYKC_YEAST SYK_ACICA SYLC_NEUCR SYL_BACSU
SYMC_YEAST SYM_BACST SYNC_YEAST SYN_BACSU SYP_CHLTR SYQ_ECOLI SYRC_YEAST SYR_BRELA SYSC_YEAST SYS_BACSU
SYT1_BACSU SYT2_BACSU SYTC_HUMAN SYT_BUCAP SYV_BACST SYWC_YEAST SYW_BACST SYY1_BACSU SYY2_BACSU SYYC_YEAST
SYY_BACCA TAGD_BACSU TAGE_BACSU TAGF_BACSU TBUD_BURPI THGA_ECOLI THIK_ECOLI THIL_ALCEU THL_BACSU THS1_ARAHY
THS2_VITVI THS3_ARAHY TPIS_HORVU TPMT_HUMAN TPP2_HUMAN TRB1_ARATH TREA_YEAST TREC_BACSU TRXB_ECOLI TSAl_YEAST
TSA2_YEAST TYRA_ECOLI TYRB_ECOLI TYSY _ECOLI TYTR_CRIFA UBC1_HUMAN UBIC_ECOLI UBL1_HUMAN UBL3_HUMAN UBL_APLCA
UDPG_BOVIN UGPQ_ECOLI UVRB_ECOLI UVRC_BACSU VATE_BOVIN VATF_HUMAN VDH_STRCO VGB_STAAU XGPT_ECOLI XYLA_ ACTMI
YJ9M_YEAST YPR1_YEAST

(3) 37 cytoskeletal proteins

ABP1_SACEX CISY_TETTH CP23_CHICK CYLI_BOVIN NINL_DROME NINS_DROME PAS5_PICPA REST_HUMAN BNK_DROME CALD_CHICK
DCPY_NEUCR MYSA_CAEEL MYSB_CAEEL MYSC_CAEEL MYSD_CAEEL MYSE_CHICK MYSG_CHICK MYSP_CAEEL MYSQ DROME MYSS_CHICK
MYST_RABIT MYS_AEQIR N214_HUMAN N358_HUMAN NULL_DROME CIN8_YEAST DYN1_CAEEL DYN2_HUMAN DYN3_RAT DYN_DROME
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KCRF_STRPU KIP1_YEAST KLP1_CHLRE

MAPX_DROME

(4) 53 endoplasmic reticulum proteins

ABP1_ARATH
CRUA_BRANA
ES10_RAT
GR74_TOBAC
MAN1_RAT
UGGG_DROME

ABP2_TOBAC
CYPB_BOVIN
EST1_CAEBR
GR75_TOBAC
MTP_HUMAN

VS09_ROTB4

ABP4_MAIZE
CYPD_YEAST
EUG1_YEAST
GR78_HUMAN
P4H2_MOUSE
VS10_ROTBN

(5) 230 extracellular proteins

A1AF_RABIT
ALB1_SALSA
AMYR_BACS8
ARY1_CALVI
CAS3_MOUSE
CHI4_BRANA
CTRB_BOVIN
EBA1_FLAME
GDN_HUMAN
GTFC_STRMU
HLT_VIBPA
IGUP_HUMAN
KNT1_RAT
MIG_HUMAN
PAPA_ECOLI
PELE_ERWCH
PHO2_YARLI
PROA_LEGPN
RNBR_BACAM
SODE_BRUPA
TCPA_VIBCH
TRY7_ANOGA
TRYZ_DROER

A1AS_CAVPO
ALB2_SALSA
ANT3_BOVIN
ARY2_CALVI
CASB_BOVIN
CHIA_CICAR
CTRL_HALRU
EBA2_FLAME
GLBH_TRICO
GUN_ASPAC
HP20_TAMAS
IML2_DROME
KNT2_RAT
MIP_TRYCR
PAPH_ECOLI
PELF_ERWCH
PHOA_ASENG
PROB_STRAG
RNLE_LYCES
SODF_MYCTU
THBG_HUMAN
TRYA_DROER
UFBP_PIG

A1AT_BOMMO
ALBU_BOVIN
APA1_BOVIN
ARYA_MANSE
CASK_BOVIN
CHIB_LYCES
CUDP_METAN
EBA3_FLAME
GLB_ASCSU

HCY2_LIMPO
HP25_TAMAS
INIG_HUMAN
LIP_PSESP

MS2A_DROMA
PBPA_STRPN
PEL_BACSU

PIL1_ECOLI
PRSH_ECOLI
RNS2_NICAL
SSP1_BOMMO
THET_THEVU
TRYB_DROER
VTDB_HUMAN

ANTA_HYDMA
CYSP_PHAVU
FD31_BRANA
GSBP_CHICK
P4HA_CAEEL

A1BG_HUMAN
ALS_HUMAN

APA2_HUMAN
ARYB_MANSE
CBG_HUMAN

CHIP_BETVU
CUTI_ALTBR
ELAS_PSEAE
GP39_HUMAN
HCY6_ANDAU
HP27_TAMAS
INU1_KLUMA
LP1_BOMMO

MS2B_DROMA
PEDF_HUMAN
PERL_BOVIN
PIL4_ECOLI

. PRT1_ERWCA

RN_BACCI

STAT_HUMAN
THRB_BOVIN
TRYD_DROER
VTNC_HUMAN

(6) 26 Golgi apparatus proteins

A472_HUMAN A47H_DISOM ADG_MOUSE
COPD_BOVIN COPE_BOVIN COPG_BOVIN
SFT1_YEAST SPC3_STRPU SYN5_HUMAN

A471_RAT

(7) 38 lysosomal proteins

AGAL_HUMAN
CATD_CHICK
FUCO_CANFA
NAGA_HUMAN

ARSA_HUMAN
CATH_HUMAN
GA6S_HUMAN
PCP_HUMAN

ARSB_FELCA
CATL_BOVIN
GALC_HUMAN
PPAS5_HUMAN

(8) 86 mitochondrial proteins

ACR1_YEAST
COX1_ALBCO
DHSD_CHOCR
LCF2_YEAST
NI9M_BOVIN
OMO6_YEAST
SDH3_YEAST
YBS8E_YEAST
YIA6_YEAST

ADT1_BOVIN
COX2_ACHDO
FABH_BOVIN
LEU1_YEAST
NLTP_BOVIN
OMO7_YEAST
SDH4_YEAST
YD1K_SCHPO
YMC1_YEAST

ADT2_ARATH
COXT_YEAST
FLX1_YEAST
M20M_BOVIN
NUAM_BOVIN
OM20_NEUCR
SHM1_YEAST
YDBA_SCHPO
YMC2_YEAST

(9) 288 nuclear proteins

A33_PLEWA
AMT1_CANGA
ATO_DROME
BF1_HUMAN
CB80_HUMAN
CDX2_MOUSE
CGM2_SCHPO
CSE1_YEAST
DA_DROME
E74A_DROME
ENP1_YEAST
FKB2_BOVIN
GASB_XENLA
GLI3_HUMAN
H101_CHICK
H2A2_HUMAN
H2BE_STRPU
HES2_RAT
HME1_BRARE
HMMD_BRARE
HSF1_ARATH
HXB2_HUMAN
HXDB_CHICK
ISL3_BRARE
LOLL_DROME
MCR_HUMAN
MYBA_CHICK
NIT4_NEUCR
ORC1_KLULA

AANT_HDVAM
AP2_HUMAN
AX11_ARATH
BIMB_EMENI
CBFA_HUMAN
CDX4_MOUSE
CHD1_MOUSE
CSE4_YEAST
DBP2_SCHPO
EGR1_BRARE
ERC1_HUMAN
FKH_DROME
GAGA_DROME
GLI_HUMAN
H114_BRARE
H2A4_CHICK
H2BN_STRPU
HESS5_RAT
HME3_BRARE
HMPR_DROME
HSF3_LYCPE
HXB4_CHICK
HXDD_CHICK
JUNB_HUMAN
LOS1_YEAST
ME18_MOUSE
NAB2_YEAST
NOT2_YEAST
ORC3_YEAST

ABP1_SCHPO
APN1_YEAST
AXI6_PEA
BRAC_MOUSE
CBFX_HUMAN
CEBB_CHICK
CID_DROME
CST2_HUMAN
DBX_MOUSE
EGR4_RAT
ERF_HUMAN
FLI1_HUMAN
GAT1_CHICK
GLN3_YEAST
H11R_CHICK
H2AL_STRPU
H5B_XENLA
HEXP_LEIMA
HMEV_DROME
HMX1_CHICK
HSP2_ALOSE
HXB6_BRARE
ID2_HUMAN
KE2_MOUSE
MA1R_YEAST
MEF2_HUMAN
NAM8_YEAST
NUC2_SCHPO
ORC5_YEAST

COPP_BOVIN
TGN3_RAT

ASM_HUMAN

CATS_BOVIN
GL6S_CAPHI
PPAL_HUMAN

ADT3_BOVIN
COXW_YEAST
FOLC_HUMAN
MD10_YEAST
NUGM_BOVIN
OM22_NEUCR
SMF1_YEAST
YDE9_SCHPO
YMX1_RAPSA

ACE1_YEAST
AREA_EMENT
B1_USTMA
BRC2_DROME
CBF_HUMAN
CEBG_HUMAN
CLK1_HUMAN
CTF4_CHICK
DET1_ARATH
ELF1_DROME
ERM_HUMAN
FOSB_HUMAN
GAT3_CHICK
GROU_DROME
H11_ARATH
H2AO_CHITH
HS5_ANSAN
HG14_BOVIN
HMG2_CHICK
HMZ1_DROME
HTF4_HUMAN
HXB8_MOUSE
ID4_HUMAN
KEM1_YEAST
MA6R_YEAST
MET4_YEAST
NECD_MOUSE
NUMB_DROME
P53_CERAE

SCP1_MOUSE

CBP2_HUMAN
ENPL_CATRO
FD32_BRANA
HEMA_CVBF
PDI_BOVIN

AACT_HUMAN
AMT4_PSESA
APAR_PIG
B2MG_BARIN
CBPN_HUMAN
CHOD_BREST
DEXT_ARTSP
EP45_XENLA
GRP1_RAT
HCYA_EURCA
HPT1_HUMAN
KNH1_BOVIN
LP2_BOMMO
NKG5_HUMAN
PEL1_ERWCA
PHB_ALCFA
PILS5_ECOLI
PRTS_BOVIN
SACB_STRMU
STRK_STRGR
TRY1_ANOGA
TRYE_DROER
XYN1_cocca

AP19_MOUSE
COPZ_BOVIN
VP15_YEAST

ASPG_HUMAN
CYS1l_DICDI
HEXA_DICDI
PRTP_HUMAN

ADT_CHLKE

COXX_YEAST
FUMH_HUMAN
MMM1_YEAST
NUHM_BOVIN
OM37_YEAST
SMF2_YEAST
YEA6_YEAST
YNI3_YEAST

AD4B_BOVIN
ARG2_YEAST
B3_USTMA
BRLA_EMENI
CBP_MOUSE
CEB_DROME
CPC1_NEUCR
CTK2_YEAST
DNL3_HUMAN
ELG_DROME
ESCA_DROME
FOS_CHICK
GATS_CHICK
GRP2_SINAL
H13_GLYBA
H2AV_CHICK
H5_CAIMO
HG17_BOVIN
HMGB_CHITE
HN3A_HUMAN
HX1A_MAIZE
HXC4_HUMAN
IKAR_MOUSE
KNRL_DROME
MAF2_MOUSE
MIG1_KLULA
NFI2_CHICK
NUR1_MOUSE
PAN2_RAT

SCP2_MOUSE

CNBP_MOUSE
ER31_RAT

FD3E_ARATH
HS47_CHICK
PNOC_HUMAN

ABP_HUMAN
AMT6_BACS7
APC3_CANFA
BAR1_YEAST
CETP_HUMAN
CL43_BOVIN
E13A_LYCES
ESP4_LACVV
GRP2_RAT
HCYB_PANIN
HPT2_HUMAN
KNH2_BOVIN
LP3_BOMMO
NUC_SERMA
PEL3_ERWCA
PHL1_BACCE
PIL6_ECOLI
PRTZ_BOVIN
SAP_RAT
SUBE_BACSU
TRY2_ANOGA
TRYG_DROME
XYNA_STRLI

AP47_CAEEL
FURI_BOVIN
VP34_YEAST

ASPP_AEDAE
CYS2_DICDI
HEXB_HUMAN
SAP3_HUMAN

ATM1_YEAST
COXY_YEAST
GDC_BOVIN

MPCP_BOVIN
NUJM_NEUCR
OM40_NEUCR
SYH_YEAST

YEO3_YEAST
ZRC1_YEAST

ADF1_DROME
ARP1_HUMAN
B5_USTMA
BTEB_RAT
CC16_YEAST
CENA_HUMAN
CPH1_CANAL
CUT1_SCHPO
DNLI_CANAL
ELK1_HUMAN
ESP1_YEAST
FRA1_HUMAN
GATB_BOMMO
GSBP_DROME
H15_MOUSE
H2AZ_HUMAN
HAP2_KLULA
HIBN_XENLA
HMGD_DROME
HN3G_HUMAN
HX3_XENLA
HXC6_HUMAN
ILF_HUMAN
KU70_HUMAN
MAT2_YEAST
MKS1_YEAST
NFIC_CHICK
OC3A_HUMAN
PAX1_MOUSE

VP22_ASFB7

CRT1_BOVIN
ERS5_HUMAN
FD61_SOYBN
HS7C_CAEEL
PTN1_HUMAN

ACH1_BOMMO
AMY1_HORVU
APC4_HUMAN
BTD_HUMAN

CFAI_HUMAN
COTR_CAVPO
E13G_TOBAC
FA8_HUMAN

GSHP_BOVIN
HCYD_EURCA
HPT_ATEGE

KNH_HUMAN

LP4_BOMMO

NUP1_PENCI
PELA_ERWCA
PHL2_BACCE
PIL7_ECOLI
PSPA_CANFA
SAX_RANCA

SUBF_BACSU
TRY3_AEDAE
TRYI_DROME
XYNB_STRLI

ASPX_HUMAN
LDLC_CAEEL

BGAL_HUMAN
CYS4_DICDI
IDS_HUMAN
SAP_HUMAN

ATPY_YEAST
CY1_NEUCR

IM17_YEAST
MRS3_YEAST
NUPM_NEUCR
OM70_NEUCR
SYV_NEUCR

YFL5_YEAST

ADR6_YEAST
ATF2_RAT
B7_USTMA
BUB1_YEAST
CC23_YEAST
CF1A_DROME
CPO_DROME
CYCH_XENLA
DP30_CAEEL
ELT2_CAEEL
ESTR_CHICK
FTFB_DROME
GBF2_ARATH
GSCB_XENLA
H1B_CHITE
H2A_ACRFO
HAP4_YEAST
HIR2_YEAST
HMGI_HUMAN
HNFA_HUMAN
HXA1_HUMAN
HXC9_MOUSE
IPF1_HUMAN
LAC9_KLULA
MAX_BRARE
MOT1_YEAST
NFIR_MESAU
OC3N_HUMAN
PAX3_HUMAN

CRT2_BOVIN
ER60_RAT
FD62_SOYBN
IOD1_RAT
RCN_HUMAN

ACH2_LONAC
AMYB_BACPO
APE_BOVIN

CAC3_BOVIN
CFH1_HUMAN
CTR1_PENVA
E13H_TOBAC
FBP3_STRPU
GTF1_STRDO
HCYE_EURCA
HYPB_HYPLI
KNL1_BOVIN
LP5_BOMMO

NUP3_PENSQ
PELB_ERWCA
PHL3_BACCE
PON2_CANFA
PSPB_BOVIN
SELP_HUMAN
SUBV_BACSU
TRY4_ANOGA
TRYP_ASTFL
XYNC_PSEFL

CB45_MOUSE
RAB1_LYMST

BGLR_HUMAN
CYS5_DICDI
IDUA_CANFA
SPHM_HUMAN

BPL1_HUMAN
CYPH_NEUCR
IM23_YEAST
MRS4_YEAST
NURM_NEUCR
PET8_YEAST
TXTP_HUMAN
YG20_YEAST

AFLR_ASPFL
ATF4_HUMAN
BAF1_KLULA
C46H_HUMAN
CCG1_DROME
CF1_BOMMO

CPR1_PETCR
CYS3_NEUCR
DPOA_DROME
EMC_DROME

ETS2_CHICK
FUS_HUMAN

GBF4_ARATH
GSC_BRARE

H1D_HUMAN

H2BO_HUMAN
HATS5_ARATH
HM22_CAEEL
HMGY_HUMAN
HOX3_BRAFL
HXA4_CHICK
HXD1_MOUSE
IRF1_HUMAN
LAMO_DROME
MBP1_KLULA
MRF1_YEAST
NGFI_CANFA
OCT1_CHICK
PAX6_BRARE

Subcellular location prediction

CRTC_CAEEL
ER72_HUMAN
FD6E_ARATH
KRE5_YEAST
SLS1_YARLI

AFAM_HUMAN
AMYG_HORRE
API_ACHLY
CAS1_BOVIN
CFHD_HUMAN
CTR2_CANFA
E13K_TOBAC
FETA_GORGO
GTF2_STRDO
HEMO_HUMAN
IBP3_BOVIN
KNL2_BOVIN
LSTP_STAST
OLFM_RANCA
PELC_ERWCA
PHLD_BOVIN
PON_HUMAN
PSPC_BOVIN
SEPA_STAEP
SVS4_RAT
TRYS5_ANOGA
TRYT_DROER
YGP1_YEAST

COPA_BOVIN
RAB6_HUMAN

CATB_BOVIN
CYSP_TRYBB
LIPA_HUMAN

C560_BOVIN
CYT1_CAEBR
IMP1_YEAST
MSP1_CAEEL
NUXM_NEUCR
PMT_YEAST

UCP_HUMAN

YG5F_YEAST

AG_BRANA
ATHS5_ARATH
BASO_HUMAN
CB20_HUMAN
CDK7_HUMAN
CF23_DROME
CREA_ASPNG
DABO_YEAST
DPOL_EBV
EMP1_WHEAT
ETV1_MOUSE
GA15_CRILO
GCF_HUMAN
GSH1_MOUSE
H1G_STRPU
H2B2_CHLRE
HBPB_ARATH
HM8_XENLA
HMG_TETPY
HP1_DROME
HXA7_COTJA
HXD4_CHICK
IRTF_HUMAN
LAMC_HUMAN
MCM1_YEAST
MSSP_HUMAN
NHPA_YEAST
OCT6_HUMAN

CRU4_BRANA
ERG2_MAGGR
G6PE_RABIT
LHS1_YEAST
SYN5_RAT

AGAR_ALTAT
AMYP_HUMAN
APL3_LOCMI
CAS2_BOVIN
CFHE_HUMAN
CTRA_BOVIN
E13L_TOBAC
FGF6_HUMAN
GTFB_STRMU
HIG_DROME

IBP5_MOUSE
KNL_HUMAN

MASP_HUMAN
PAC6_MOUSE
PELD_ERWCH
PHL_LEPIN

PPT_BOVIN

PSPD_BOVIN
SERA_MANSE
SXA2_SCHPO
TRY6_ANOGA
TRYU_DROER
ZA2G_HUMAN

COPB_DROME
RB1A_HUMAN

CATC_HUMAN
DIAC_HUMAN
LYAG_HUMAN

COQ2_SCHPO
DCMC_ANSAN
IMP2_YEAST
NEUL_PIG

NUYM_NEUCR
RIM2_YEAST
YAD8_SCHPO
YHG2_YEAST

ALCR_EMENI
ATH7_ARATH
BCL3_HUMAN
CB33_YEAST
CDNB_HUMAN
CF2_DROME

CREM_MOUSE
DAX1_HUMAN
DSRA_HUMAN
ENL_HUMAN

EVX1_HUMAN
GA1B_XENLA
GCN4_YEAST
GSP1_YEAST
H10_CHITH

H2B4_CHLRE
HDF1_YEAST
HMAB_DROME
HMIX_XENLA
HPR1_CHICK
HXAB_CHICK
HXD9_HUMAN
ISL1_BRARE
LEUR_YEAST
MCM3_HUMAN
MTA1_YEAST
NIL2_HUMAN
OP2_MAIZE
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(10) 32 peroxisomal proteins

ACEA_CANTR ALOX_CANBO AMO_HANPO

CISZ_YEAST DAS_HANPO DHGY_CUCSA
OXDD_BOVIN PX18_CANMA SPYA_RABIT
URID_CANLI XDH_BOVIN

CAO1_CANTR
ECHP_CAVPO
THI1_RAT

(11) 758 plasma membrane proteins

SH1A_HUMAN S5H1B_CRIGR 5H1D_CANFA
SH6_HUMAN  5H7_CAVPO  5HT1_DROME
AAAT MOUSE AC22_STRCO ACH1_CAEEL
ACHA_BOVIN ACHE_BOVIN ACHD_BOVIN
AFQ2_STRCO AG22_MOUSE AG2R_BOVIN
AQP1_BOVIN AQP2_HUMAN AQP3_RAT

ATC1_DICDI ATC2_YEAST ATC3_SCHPO
ATCS_SYNP7 ATCX_SCHPO ATC_PLAFK

ATN2_CHICK ATN3_CHICK ATNA_ARTSA
B3A3_HUMAN B3AT_CHICK BAC1_HALS1
BFR1_SCHPO BIOX_BACSH BLR1_HUMAN
BROW_DROME BRS3_CAVPO BRS4_BOMOR
CAN1_YEAST CAR1_SCHPO CASR_BOVIN
CBIQ SALTY CCKR_HUMAN CCP1_RAT

CGOC_BOVIN CHAA_ECOLI CHS2_YEAST
CICH_TORCA CICK_HUMAN CICL_HUMAN
CIKB_DROME CIKD_HUMAN CIKE_DROME
CIN4_HUMAN CINA_ELEEL CITN_KLEPN
CLC4_HUMAN CLCS_HUMAN CLC6_HUMAN
COXM_BRAJA CPSD_STRAG CRF2_RAT

CTR2_MOUSE CVAB_ECOLI CX32_ARATH
CXA5_CANFA CXA6_CANFA CXA7_RAT

CYA1_BOVIN CYA2_RAT CYA3_RAT

CYBH_ALCEU CYB_SULAC  CYHR_CANMA
DADR_DIDMA DAGA_ALTHA DALA_YEAST
DTPT_LACLA DUR3_YEAST EATI1_BOVIN
EMP2_HUMAN EMP3_HUMAN ER21_CAEEL
EXOQ_RHIME EXOY_RHIME EXUT_ECOLI
FET4_YEAST FEUB_BACSU FEUC_BACSU
FTSH_BACSU FUR4_YEAST G1l0D_MOUSE
GAB2_HUMAN GAB3_CHICK GAB4_CHICK
GAL2_YEAST GALR_HUMAN GAP1_YEAST
GCY4_HUMAN GCY6_HUMAN GEF1_YEAST
GLR3_HUMAN GLR4_HUMAN GLR5_HUMAN
GNS1_YEAST GNTP_BACLI GPCR_LYMST
GPRS_HUMAN GPRA_HUMAN GPRC_HUMAN
GRFR_HUMAN GRHR_BOVIN GRPR_HUMAN
GUDT_BACSU GUSB_BOVIN H218_RAT

HM74_HUMAN HNM1_YEAST HS30_YEAST
HXT6_YEAST HXT7_YEAST HXTC_YEAST
INA1_TRIHA IRKO_RAT IRK1_HUMAN
IRKX_MOUSE ITR1_YEAST ITR2_YEAST
LCNC_LACLA LCR1_BOVIN LMRA_STRLN
MA6T_YEAST MALC_STRPN MALD_STRPN
MDR1_CAEEL MDR2_CRIGR MDR3_CAEEL
MEP3_YEAST MESD_LEUME ML1A_CHICK
MSHR_BOVIN MTR_NEUCR  MYP1_XENLA
NAGL_HUMAN NAH1_CRIGR NAH2_RABIT
NARI_BACSU NARK_BACSU NARV_ECOLI
NKC1_HUMAN NKC2_MOUSE NMBR_HUMAN
NQOA_PARDE NQOB_PARDE NQOC_PARDE
NTG1_HUMAN NTG2_MOUSE NTG3_HUMAN
NTS1_RAT NTS2_RAT NTSE_DROME
NUOL_ECOLI NUOM_ECOLI NUON_ECOLI
OLFO_RAT OLF1_CHICK OLF2_CHICK
OLFD_CANFA OLFE_HUMAN OLFI_HUMAN
OPS3_DROME OPS4_DROME OPSB_ANOCA
OPUB_BACSU OPUD_BACSU OXYR_HUMAN
PBUX_BACSU PDR5_YEAST PDUF_SALTY
PET2_RABIT PF2R_BOVIN PGSA_BACSU
PMA1_AJECA PMA2_ARATH PMA3_ARATH
PSAL_SYNEN PSN1_HUMAN PSN2_HUMAN
PTFC_BACSU PTFD_BACSU PTGA_BACSU
PTSA_PEDPE PTSB_BACSU PTTR_PIG

RAFP_PEDPE RAG1_KLULA RBS1_RAT

RFE_ECOLI  RGR_BOVIN  RH50_HUMAN
SAT1_RAT SATT_HUMAN SCAA_BOVIN
SENR_RAT SLY4_YEAST SNF3_YEAST
SSR4_HUMAN SSRS5_HUMAN STE2_SACKL
TA2R_HUMAN TAP1_HUMAN TAP2_HUMAN
TH2A_TRYBB THAS_HUMAN THRR_CRILO
TRK1_SACUV TRK2_YEAST TRK_SCHPO

TSCC_HUMAN TSHR_CANFA TXKR_HUMAN
V1AR_HUMAN V1BR_HUMAN V28_HUMAN
VKO2_SPVKA VM11_YEAST VUS1_HSV6U
YMN2_CAEEL YNZ3_CAEEL YOPB_YEREN

(12) 25 vacuole proteins

ABRA_PLAFC ALEU_HORVU APE3_YEAST
DP87_DICDI FAB1_YEAST GRAS5_TOXGO
PRTB_YEAST RAB4_DICDI SANT_PLAF7

SH1E_HUMAN
SHT3_HUMAN
ACH2_CAEEL
ACHE_BOVIN
AG2S_MOUSE
AQP4_HUMAN
ATC4_YEAST
ATHA_CANFA
ATP6_ALBCO
BAC2_HALS2
BMR1_BACSU
C24B_HUMAN
CB11_RABIT
CCT1_RAT
CHS3_YEAST
CIK1_DROME
CIKF_RAT
CKR1_HUMAN
CLC7_RAT
CRFR_HUMAN
CX33_MICUN
CXA8_CHICK
CYA4_RAT
CYPR_CALVI
DALS_YEAST
EAT2_HUMAN
ER22_CAEEL
FCEB_HUMAN
FIXG_RHIME
GAA1_BOVIN
GABP_BACSU
GAR1_HUMAN
GLCP_SYNY3
GLR6_RAT
GPR1_HUMAN
GPRE_RAT
GTR1_BOVIN
HAK1_SCHOC
HST6_CANAL
HXTD_YEAST
IRK2_CAVPO
KBAA_BACSU
LPLB_BACSU
MAM2_SCHPO
MDR4_DROME
ML1B_HUMAN
MYP2_XENLA
NAH3_HUMAN
NASA_BACSU
NME1_MOUSE
NQOD_PARDE
NTGL_HUMAN
NTT4_RAT
NUPC_BACSU
OLF3_CHICK
OLFJ_HUMAN
OPSD_ALLMI
P2X1_RAT
PECM_ERWCH
PI2R_HUMAN
PMA4_NICPL
PSS1_CRILO
PTLB_LACCA
PURS_STRLP
RBSC_BACSU
RHOM_DROME
SCAB_HUMAN
SNQ2_YEAST
STE3_YEAST
TAT2_YEAST
TIPW_LYCES
TSAB_RICTS
UAPC_EMENT
V2R_BOVIN
WC1B_ARATH
YOPD_YEREN

AVE3_AVESA
INV1_LYCES
SERA_PLAFG

CAO2_CANTR
FOX2_YEAST
THI2_RAT

SH1F_HUMAN
5HTA_DROME
ACH3_BOVIN
ACHG_BOVIN
AGG2_HUMAN
AQP5_HUMAN
ATCS5_YEAST
ATHL_HUMAN
ATR1_YEAST
BACH_HALSP
BMR2_BACSU
C550_BACSU
CB12_RABIT
CD20_HUMAN
CIC1_CYPCA
CIK2_DROME
CIKG_RAT
CKR2_HUMAN
CMLR_STRLI
CRNA_EMENT
CX41_XENLA
CXB1_HUMAN
CYA5_CANFA
D1DR_CARAU
DBDR_HUMAN
EAT3_HUMAN
ERD1_KLULA
FCY2_YEAST
FIXI_RHIME
GAA2_BOVIN
GAB_DROME
GAR2_HUMAN
GLHR_ANTEL
GLR7_RAT
GPR2_HUMAN
GPRF_HUMAN
GTR2_HUMAN
HEX6_RICCO
HUP1_CHLKE
HXTE_YEAST
TRK3_HUMAN
KDGT_BACSU
LSHR_HUMAN
MAP3_SCHPO
MDR5_DROME
MMR_BACSU
MYPR_BOVIN
NAH4_RAT
NDHF_BACSU
NME2_MOUSE
NQOE_PARDE
NTNO_BOVIN
NTT7_RAT
NY1R_HUMAN
OLF4_CHICK
OPRD_HUMAN
OPSG_ASTFA
P2Y4_HUMAN
PEDD_PEDAC
PIGF_HUMAN
PPALl_YEAST
PSS_BACSU
PTMA_BACSU
P_HUMAN
RCEL_CHLAU
RH_HUMAN
SCAD_HUMAN
SPSE_BACSU
STE6_YEAST
TCR2_BACSU
TJ6_MOUSE
TSAG_RICTS
UL33_HCMVA
VAL1_YEAST
WC1C_ARATH
YOR1_YEAST

CARP_YEAST
INVA_PHAAU
THGF_TOBAC

CAO4_CANMA
GOX_RAT
THIK_CANTR

5H2A_CRIGR
SHTB_DROME
ACH4_CAEEL
ACHN_CHICK
ALCP_THEP3
AQPA_RANES
ATCF_RAT
ATKA_ENTFA
ATSY_SYNP7
BACR_HALHA
BMRP_CANAL
C561_HUMAN
CB1R_HUMAN
CD2R_HUMAN
CIC2_HUMAN
CIK3_HUMAN
CIKL_DROME
CKR3_MOUSE
COMA_STRPN
CSG2_YEAST
CX56_CHICK
CXB2_HUMAN
CYA6_CANFA
D2D1_XENLA
DCDR_XENLA
EAT4_HUMAN
ERD2_ARATH
FDNH_ECOLI
FML1_HUMAN
GAA3_BOVIN
GAC1_RAT
GAR3_RAT
GLPF_BACSU
GLRK_CHICK
GPR3_HUMAN
GRA1_HUMAN
GTR3_CANFA
HGT1_KLULA
HXT1_YEAST
HXTG_YEAST
IRK4_HUMAN
KHT2_KLULA
LSPA_STAAU
MAS_HUMAN
MDR_LEITA
MOTA_BACSU
NAAA_PIG
NAH_SCHPO
NHAC_BACFI
NME3_MOUSE
NSR_LACLA
NTPI_ENTHR
NTTA_CANFA
NY2R_HUMAN
OLF5_CHICK
OPRK_CAVPO
OPSH_ASTFA
PACR_HUMAN
PER1_HUMAN
PIP_LACLA
PRA1_USTMA
PSY_NEUCR
PTMB_BACST
QAY_NEUCR
RCEM_CHLAU
ROCE_BACSU
SCAG_HUMAN
SPAB_BACSU
STL1_YEAST
TCRB_BACSU
TLR2_DROME
TSAK_RICTS
UN17_CAEEL

CAO_YEAST
HDE_CANTR
THIL_CANTR

SH2B_HUMAN
AA1R_BOVIN
ACH5_CHICK
ACHO_CARAU
ALKB_PSEOL
AQPL_YEAST
ATCL_MYCGE
ATKB_ENTFA
ATU1_YEAST
BACS_HALHA
BOFA_BACSU
CADA_STAAU
CB21_RABIT
CD47_HUMAN
CIC5_HUMAN
CIK4_BOVIN
CIKW_DROME
CKRV_MOUSE
COMP_BACSU
CTK1_RABIT
CXAl_BOVIN
CXB3_MOUSE
CYA7_HUMAN
D2DR_BOVIN
DCOB_KLEPN
EBI1_HUMAN
ERS1_YEAST
FDNI_ECOLI
FML2_HUMAN
GAA4_BOVIN
GAC2_BOVIN
GASR_HUMAN
GLPR_HUMAN
GLR_HUMAN
GPR4_HUMAN
GRA2_BACSU
GTR4_HUMAN
HH1R_BOVIN
HXT2_YEAST
HYBB_ECOLI
IRKS_HUMAN
KINB_BACSU
LYSI_CORGL
MC3R_HUMAN
ME10_CAEEL
MRED_BACSU
NABA_RAT
NAMI_BOVIN
NIST_LACLA
NME4_MOUSE
NTBE_CANFA
NTPJ_ENTHR
NUOA_ECOLI
NY4R_HUMAN
OLF6_CHICK
OPRM_HUMAN
OPSI_ASTFA
PAFR_CAVPO
PER2_HUMAN
PKBS_BOVIN
PRA2_USTMA
PT2A_ARATH
PTNC_ECOLI
QOX1_BACSU
RDC1_CANFA
ROM1_BOVIN
SCRC_HUMAN
SPE4_CAEEL
STP1_ARATH
TCR_BACST
TOK1_YEAST
TSAR_RICTS
UN36_CAEEL

CAT1_GOSHI
LUCI_PHOPY
THIM_CANTR

SH2C_HUMAN
AA2A_CANFA
ACH6_CHICK
ACHP_CARAU
AMT_CORGL
AQUA_ATRCA
ATCP_HUMAN
ATMA_ECOLI
ATXA_LEIDO
BACT_HALVA
BRB1_HUMAN
CADD_STAAU
CB22_RABIT
CD97_HUMAN
CICB_RAT
CIK5_HUMAN
CIN1_LOLBL
CLC1_HUMAN
COX2_BACFI
CTPA_MYCLE
CXA2_XENLA
CXB4_MOUSE
CYA8_HUMAN
D3DR_CERAE
DCOG_KLEPN
EDG1_HUMAN
ET1R_BOVIN
FDOH_ECOLI
FMLR_HUMAN
GAA5_HUMAN
GAC3_MOUSE
GC96_HUMAN
GLPT_BACSU
GLTP_BACSU
GPR5_HUMAN
GRA3_RAT
GTR5_HUMAN
HIP1_YEAST
HXT3_YEAST
IDD_MOUSE
IRK7_HUMAN
KINC_BACSU
M6A_MOUSE
MC4R_HUMAN
MEC4_CAEEL
MRG_HUMAN
NAC1_BOVIN
NANU_RABIT
NK1R_CAVPO
NMZ1_HUMAN
NTCH_RAT
NTPR_RAT
NUOH_ECOLI
NYR_DROME
OLF7_RAT
OPRX_CAVPO
OPSR_ANOCA
PAR2_HUMAN
PER3_BOVIN
PLLP_RAT
PRO1_LEIEN
PT2B_ARATH
PTND_ECOLI
QOX2_ACEAC
RDS_BOVIN
RT1B_ACTPL
SCRT_DROME
SSR1_HUMAN
STT3_CAEEL
TERC_ALCSP
TRA2_CAEEL
TSAS_RICTS
UNC7_CAEEL

VCO3_SPVKA
WHIT_DROME
YRO2_YEAST

CARV_CANAL
P34_SOYBN

VG74_HSVSA
Y736_HAEIN
YTP1_YEAST

CBPS_YEAST
PPB_YEAST

VGLB_HSVAL
YAG7_YEAST
YZN4_CAEEL

CBPY_CANAL
PR1A_TOBAC

CAT2_GOSHI
MDHP_YEAST
UBCX_PICPA

SHSA_HUMAN
AA2B_HUMAN
ACH7_BOVIN
ACTR_BOVIN
APJ_HUMAN
AT7B_HUMAN
ATCQ_HUMAN
ATMB_SALTY
ATXB_LEIDO
BENE_ACICA
BRB2_HUMAN
CALR_HUMAN
CB2R_HUMAN
CFTR_BOVIN
CICC_RABIT
CIK6_HUMAN
CIN2_RAT
CLC2_HUMAN
COX3_SYNVU
CTPB_MYCLE
CXA3_BOVIN
CXBS5_MOUSE
CYA9_MOUSE
D4DR_HUMAN
DEG1_CAEEL
EDG2_SHEEP
ET3R_XENLA
FDOI_ECOLI
FRIZ_DROME
GAA6_MOUSE
GAC4_CHICK
GCRC_MOUSE
GLR1_HUMAN
GLTT_BACCA
GPR6_HUMAN
GRB2_BACSU
GTRL_DROME
HLY2_ECOLI
HXT4_YEAST
IL8A_HUMAN
IRK9_RAT
LACP_KLULA
M6B_MOUSE
MCSR_HUMAN
MEP1_YEAST
MRP1_HUMAN
NAC2_RAT
NAPA_ENTHR
NK2R_BOVIN
NQO7_PARDE
NTCR_HUMAN
NTRY_AZOCA
NUOJ_ECOLI
OAR_DROME
OLF8_RAT
OPS1_CALVI
OPSU_BRARE
PATC_DROME
PER4_HUMAN
PM1_HUMAN
PSAA_SYNEN
PTBA_BACSU
PTR2_CANAL
QOXM_SULAC
RDXA_RHOSH
RT3B_ACTPL
SE12_CAEEL
SSR2_BOVIN
SUL1_YEAST
TH11_TRYBB
TRBA_ECOLI
TSAT_RICTS
US27_HCMVA
VIPR_HUMAN
YG90_HAEIN

CHLY_HEVBR
PR1B_TOBAC

CATA_BOVIN
OXDA_HUMAN
URIC_ASPFL

SH5B_MOUSE
AA3R_HUMAN
ACH9_RAT
ADT_RICPR
APRD_PSEAE
ATA1_SYNY3
ATCR_HUMAN
ATN1_BUFMA
B3A2_HUMAN
BETP_CORGL
BRNQ_LACDL
CAMG_HUMAN
CBIN_SALTY
CGCC_BOVIN
CICG_HUMAN
CIKA_RAT
CIN3_RAT
CLC3_HUMAN
COX4_THEP3
CTR1_YEAST
CXA4_HUMAN
CY14_NEUCR
CYAB_BORPE
DSDR_FUGRU
DOPR_DROME
EMP1_HUMAN
ETBR_BOVIN
FDXH_HAEIN
FSHR_BOVIN
GAB1_BOVIN
GAD_MOUSE
GCRT_CHICK
GLR2_HUMAN
GNP1_YEAST
GPR7_HUMAN
GRB_HUMAN
GU27_RAT
HLYB_ACTAC
HXTS_YEAST
IL8B_HUMAN
IRKG_MOUSE
LCN3_LACLA
MA3T_YEAST
MCBE_ECOLT
MEP2_YEAST
MSCL_CLOPE
NAGC_HUMAN
NAPT_HUMAN
NK3R_HUMAN
NQO8_PARDE
NTDO_BOVIN
NTR_HUMAN
NUOK_ECOLI
OL1E_HUMAN
OLF9_RAT
OPS2_DROME
OPSV_CHICK
PBP4_NOCLA
PET1_HUMAN
PM22_HUMAN
PSAB_SYNEN
PTFB_RHOCA
PTRR_DIDMA
QUTD_EMENI
RFAL_ECOLI
RTA_RAT
SECY_BACLI
SSR3_HUMAN
SUR_CRICR
TH12_TRYBB
TRFR_HUMAN
TSAW_RICTS
US28_HCMVA
VIPS_HUMAN
YKH3_CAEEL

CYS2_MAIZE
PR1C_TOBAC



Subcellular location prediction

Appendix B

For the reader’s convenience, let us prove that the covarianaght multiplying both sides of Equation B2 by" andy,
matrix C; as defined by Equations 7 and 8 has no negativeespectively, we can obtain

eigenvalues.
Suppose y'C:y =y'B:Biy = B{y)'(Bi{y)=0 (B4
By = S —xbel (B1)  Suppose¥ is an eigenvector o€, i.e.
where §; is a 20<n; matrix consisting of then; vectors of C:¥ = \¥Y (B5)

Equation 2 ana is theng-dimensional column vector with all

components equal to 1. Then we have where A is the corresponding eigenvalue. Left multiplying

both sides of the above equation ¥/, we can obtain

Ce = B¢ B{ (B2)
YTC¥ = ¥A\Y = \¥¥ (B6)
Suppose
y Because Equation B4 and the fact that an eigenvector is a
y; non-zero vector, it follows that
y=1 . (B3) ¥TC; ¥
: A=——— = (B7)
Y20 ¥y

is any real vector in the 20-D composition space. Left andThis completes the proof.

Appendix C

Covariant discriminant values computed according to Equation 5 for the 37 proteins in the cytoskeleton subset of the datas
S!2 (see Appendix A) and the subcellular location predicted for each of these proteins according to Equation 13

Protein Predicted
Code F(X,X') F(X,X°) F(X,X’) F(X,X') F(X,X°) F(X,X°) F(X,X) F(X,X% F(X,X°) F(X,X°) F(Xx,Xx") F(X,X%) location®
ABP1_SACEX -47.94 -64.15 -146.20 -85.92 -108.27 165.30 247.34 -107.20 -121.34 275.88 -79.87 105.90 Cytoskeleton
CISY_TETTH -132.25 -145.58 -144.84 -133.41 -141.52 47.94  -65.20 -126.04 -138.39 -45.97 -128.18 -16.30 Cytoplasm®
CP23_CHICK  127.78 40.91 -146.89 96.69  -77.75 2364.53  731.82 -71.49 -114.97 671.92 39.37 477.30 Cytoskeleton
CYLI_BOVIN  126.21 52.65 -142.02 96.16  -51.35 1071.65 607.89 84.43 -114.24 790.11 117.66  418.40 Cytoskeleton
NINL_DROME -152.93 -149.19 -155.29 -124.59 -141.66 1827.02 -68.35 -133.57 -143.46 -74.25 -141.41 -60.09 Cytoskeleton
NINS_DROME -152.23 -154.26 -157.30 -136.62 -142.12 43.53 -3.37 -138.97 -140.70 -34.93 -146.30 -90.72 Cytoskeleton
PAS5_PICPA -159.05 -152.37 -157.89 -150.39 -146.36 0.97 -147.06 -150.08 -144.95 -116.34 -151.92 -86.53 Chloroplast®
REST_HUMAN -88.59 -112.63 -158.12 -125.92 -127.06 120.00 196.66 -129.55 -135.67 233.20 -97.89 -102.93 Cytoskeleton
BNK_DROME -108.04 -98.99 -147.25 -56.71 -124.88 1691.28 -36.96 -94.87 -133.94 398.65 -92.74 63.38 Cytoskeleton
CALD_CHICK 59.68 13.77 -144.92 52.52 -36.48 2129.80 1314.42 -62.52 -99.94 2690.52 52.09 197.40 Cytoskeleton
DCPY_NEUCR -152.59 -155.03 -149.19 -116.95 -145.20 175.86 -127.13 -150.93 -137.74 -89.29 -150.50 29.99 Cytoplasm®
MYSA_CAEEL -118.27 -130.66 -169.19 -129.50 -127.08 104.22 174.67 -131.87 -140.38 228.96 -115.72 -67.74 Cytoskeleton
MYSB_CAEEL -112.50 -125.66 -167.74 -135.83 -128.29 230.45 165.19 -132.62 -142.70 230.48 -113.83 -7.88 Cytoskeleton
MYSC_CAEEL -116.33 -127.13 -168.74 -126.12 -128.53 336.70 147.74 -132.38 -142.98 231.57 -111.15 -32.96 Cytoskeleton
MYSD_CAEEL -124.24 -132.02 -165.77 -128.17 -127.81 315.20 141.46 -133.49 -142.42 193.17 -120.03 -70.99 Cytoskeleton
MYSE_CHICK -114.32 -129.13 -167.24 -128.04 -126.21 239.42 224.74 -134.05 -138.76 191.64 -103.79 -111.10 Cytoskeleton
MYSG_CHICK -100.50 -117.80 -163.04 -121.89 -122.65 671.17 197.11 -123.83 -137.23 354.04 -94.47 -29.91 Cytoskeleton
MYSP_CAEEL -66.19 -97.04 -155.59 -98.51 -101.21 150.54 376.69 -95.79 -122.91 808.92 -68.22 80.27 Cytoskeleton
MYSQ_DROME -109.26 -103.01 -144.83 -70.54 -109.28 209.46 171.84 -117.41 -128.23 793.90 -94.59 -30.23 Cytoskeleton
MYSS_CHICK -114.51 -130.52 -166.92 -126.93 -125.36 254.38 233.14 -133.41 -137.83 230.13 -104.66 -107.36 Cytoskeleton
MYST_RABIT -101.25 -119.31 -167.07 -125.66 -121.19 692.19 223.14 -123.73 -136.86 363.43 -93.16 -46.89 Cytoskeleton
MYS_AEQIR  -115.15 -128.80 -161.66 -135.49 -127.09 720.69 201.40 -131.71 -142.06 231.48 -115.34 -88.17 Cytoskeleton
N214_HUMAN -112.55 -86.98 -148.84 24.12 -119.86 841.08 -95.19 -86.05 -128.80 772.87 -74.94 72.59 Cytoskeleton
N358_HUMAN -149.99 -146.55 -160.33 -141.04 -148.18 -9.84 -107.93 -149.16 -146.03 -50.64 -145.40 -78.42 Cytoskeleton
NULL_DROME -116.08 -97.40 -151.00 -75.97 -109.37 203.61 101.33 -57.90 -137.15 216.07 -92.97 170.22 Cytoskeleton
CIN8_YEAST -112.35 -127.15 -154.71 -118.29 -129.71 3960.65 -30.20 -117.48 -141.52 41.35 -118.42 -110.67 Cytoskeleton
DYN1_CAEEL -147.12 -146.38 -160.89 -115.34 -142.29 -141.55 -25.83 -135.74 -143.50 -105.15 -146.96 20.24 Cytoskeleton
DYN2_HUMAN -145.92 -148.57 -163.28 -132.45 -139.85 290.81 -51.34 -137.82 -143.73 -107.88 -149.16 -118.79 Cytoskeleton
DYN3_RAT -154.48 -153.85 -163.76 -146.50 -146.18 -160.84 -65.80 -146.86 -147.09 -124.82 -153.68 -130.92 Cytoskeleton
DYN_DROME -153.60 -152.79 -158.21 -141.59 -143.05 -68.18 1.55 -141.93 -144.09 -91.26 -152.98 -46.43 Cytoskeleton
KCRF_STRPU -154.39 -155.55 -154.36 -140.75 -149.35 -90.86 -130.59 -144.97 -143.99 -98.75 -144.56 -53.28 Cytoplasm®
KIP1_YEAST -124.46 -125.30 -149.85 -114.16 -129.13 1271.24 -21.15 -120.65 -137.50 22.84 -120.95 -81.66 Cytoskeleton
KLP1_CHLRE -142.32 -142.05 -149.19 -105.79 -137.18 891.50 -33.91 -138.46 -133.97 212.63 -138.80 80.58 Cytoskeleton
MAPX_DROME -116.72 -120.74 -151.75 -80.47 -140.37 -144.22 -65.92 -125.92 -141.54 118.07 -120.46 24.60 Cytoskeleton
SCP1_MOUSE -110.58 -107.42 -149.90 -125.45 -129.35 6389.11 -101.50 -99.78 -111.37 217.81 -126.40 -20.45 Cytoskeleton
SCP2_MOUSE -107.85 -113.55 -148.74 -132.78 -129.78 8248.70 -80.76 -94.95 -104.77 210.15 -127.77 30.31 Cytoskeleton
VP22_ASFB7 -126.90 -121.66 -145.74 -130.68 -136.70 305.38 -57.75 -100.77 -120.23 141.96 -117.35 -67.32 Cytoskeleton

The rate of correct prediction for the proteins in the cytoskeleton subs@#2is 33/37 = 89.2%.

aThe indices 1,2, 3 .., 12represent the 12 subcellular locations (Figure 1) as defined in the text. The index for cytoskeleton is F(Wpeh is the
minimum, the corresponding protein is predicted to be located in cytoskeleton. The index for cytoplasm is E{Xbe is the minimum, the corresponding
Erotein is predicted to be located in cytoplasm. And so forth.

Incorrect prediction.
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Appendix D

Although the coupling effects among different amino acidsee that there was only one covariance mafriin ProtLock
components are taken into account by both the ProtLockhat was defined for the entire s&trather than each of tha

algorithm (Cedanet al,, 1977) and the current algorithm via subsetsG; (£ = 1, 2, 3, . . .,m) having its own covariance
a covariance matrix, there are two important differencegnatrix C;. Accordingly, the Mahananobis distance defined in
between these two. ProtLock is a simplified form of the genuine Mahalanobis

Difference in covariance matrix distance. Thi; wiI.I ce.rta}inly. make t_he ProtLor_:k algorithm lose
. . . some power in discriminating entries from different subsets.
Rather tharCy as defined by Equations 7 and 8, the covariance | s instinctive to point out that the covariance matrix
matrix in the ProtLock algorithm was given by (Equation D1) given by Cedanet al. (1997) was defined in
Ci1 Cio ... Ciop a 20-D space rather than 19-D space as originally formulated
C2Y1 c2’2 o 02‘20 by K.C.Chou (1995). As mentioned in the prediction algorithm
C = T - (D1)  Section, this would lead to a divergent difficulty when
: : : : calculating the Mahalanobis distance in terms of the inverse
matrix of C unless the user understood the use of the
eigenvalue—eigenvector approach as described in this paper to
avoid such a difficulty.

Difference in discriminative criterion

m ng
=2 2 [X§; — % [XE]‘ -%] (i,j=1,2,...,20XD2) The prediction in ProtLock was based on Mahananobis distance
£=1 k=1 as defined by

where DX, X5 = X =XHTCYX =X¥) (=12, 3,...XD4)

. In contrast, the prediction in the current algorithm is based on
& = i z next (i = 1,2 20) the covariant discriminant function given by Equation 5. A
ki N €7 e comparison of Equation 5 with Equation D4 indicates that the
£t (D3)  contribution from the term ING A3 A5 . . . A%), which reflects
the difference of the covariance matric€ for different
Comparing Equation D1 with Equation 7, Equation D2 with classes, was completely ignored in the ProtLock algorithm.
Equation 8 and Equation D3 with Equation 4, one can easily his will further weaken the power of discriminativity.

C201 C202 - - - C2020

where
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