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Protein subcellular location prediction
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The function of a protein is closely correlated with its
subcellular location. With the rapid increase in new protein
sequences entering into data banks, we are confronted with
a challenge: is it possible to utilize a bioinformatic approach
to help expedite the determination of protein subcellular
locations? To explore this problem, proteins were classified,
according to their subcellular locations, into the following
12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton,
(4) endoplasmic reticulum, (5) extracell, (6) Golgi appar-
atus, (7) lysosome, (8) mitochondria, (9) nucleus, (10)
peroxisome, (11) plasma membrane and (12) vacuole. Based
on the classification scheme that has covered almost all the
organelles and subcellular compartments in an animal or
plant cell, a covariant discriminant algorithm was proposed
to predict the subcellular location of a query protein
according to its amino acid composition. Results obtained
through self-consistency, jackknife and independent dataset
tests indicated that the rates of correct prediction by the
current algorithm are significantly higher than those by
the existing methods. It is anticipated that the classification
scheme and concept and also the prediction algorithm can
expedite the functionality determination of new proteins,
which can also be of use in the prioritization of genes and
proteins identified by genomic efforts as potential molecular
targets for drug design.
Keywords: amino acid composition/bioinformatics/covariant
discriminant/organelles/subcellular compartments

Introduction

Given the sequence of a protein, how can its cellular location
and biological function be determined? This is a problem
vitally important to both cell biologists and bioinformatists
today. Since the number of sequences entering into data banks
has been rapidly increasing, it is time consuming and costly
to approach this problem entirely by performing various
locational and functional experimental tests. For example, in
the recent release 35.0 (November 1997) of SWISS-PROT
(Bairoch and Apweiler, 1997), the number of sequence entries
has reached 69 113, which represents an increase of 17.10%
over release 34.0 (October 1996). In view of this, it is highly
desirable to develop an algorithm for rapidly predicting the
subcellular compartments in which a new protein sequence
could be located.

In a pioneering study, Nakashima and Nishikawa (1994)
proposed an algorithm to discriminate between intracellular
and extracellular proteins by amino acid composition and
residue-pair frequencies. In their method, the training set
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consisted of 894 proteins, of which 649 were intracellular and
245 extracellular; the testing set consisted of 379 proteins, of
which 225 were intracellular and 154 extracellular. Recently,
Cedanoet al. (1997) extended the discriminative classes from
two to five, i.e. extracellular, integral membrane, anchored
membrane, intracellular and nuclear. This represents remark-
able progress in this area. Furthermore, in an attempt to
improve the prediction quality of protein cellular location,
they proposed an algorithm called ProtLock. The idea of
predicting the cellular location of a protein according to its
amino acid composition alone, as done in ProtLock, is actually
stimulated by the encouraging results of structural class predic-
tion, where the only input is also the amino acid composition
(see, e.g., P.Y.Chou, 1980, 1989; Nakashimaet al., 1986;
K.C.Chou, 1995; Chou and Zhang, 1995). An analysis in an
attempt to understand the correlation of the structural class
and subcellular location of a protein with its amino acid
composition was recently given by Baharet al. (1997) and
Andradeet al. (1998), respectively.

Approaching the problem in a different way, Nakai and
Kanehisa (1992) and Claroset al. (1997) proposed to predict
the cellular location of proteins based on their N-terminal
sorting signals. Obviously, these algorithms rely strongly on
the existence of leader sequences. However, as pointed out
recently by Reinhardt and Hubbard (1998), ‘In large genome
analysis projects genes are usually automatically assigned and
these assignments are often unreliable for the 59-regions’.
‘This can lead to leader sequences being missing or only
partially included, thereby causing problems for prediction
algorithms depending on them’. Therefore, a method based on
the amino acid composition would be more useful in practical
applications.

As stated in the paper by Cedanoet al. (1997), the ProtLock
algorithm is mainly based on the procedure reported by Chou
and Zhang (1995) for the prediction of protein structural
classes according to Mahalanobis distances. Since the least
Mahalanobis distance algorithm (K.C.Chou, 1995; Chou and
Zhang, 1995) is valid only when the training subset sizes are
the same or approximately the same or poor predictions will
otherwise result (Chouet al., 1998; Chou and Maggiora,
1988), in the ProtLock algorithm the training set for each class
was chosen to contain the same number of proteins. However,
as shown later, when the cellular protein classification is
conducted at a deeper level, it is found that proteins located
in some organelles are much more abundant in the SWISS-
PROT databank than in others. Besides, for a real cell the
number of cellular locations is much greater than five consid-
ered by Cedanoet al. (1997). For example, the number of
proteins described as being located in a nucleus is much
greater than that in a lysosome, and the number of proteins in
cytoplasm is much greater than that in a Golgi apparatus. In
view of this, can we develop an algorithm to predict effectively
the locations of proteins in cells at a much more discriminative
level? The current study was initiated in an attempt to solve
this problem.
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Fig. 1. Schematic diagram showing the subcellular locations of proteins. For
simplification, indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are used to
represent chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum,
extracell, Golgi, lysosome, mitochondria, nucleus, peroxisome, plasma
membrane and vacuole, respectively. Note that the vacuole and chloroplast
proteins exist only in a plant cell.

Location classification
According to their subcellular locations, proteins are classified
into the following 12 discriminative groups: (1) chloroplast,
(2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum,
(5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochon-
dria, (9) nucleus, (10) peroxisome, (11) plasma membrane and
(12) vacuole (Figure 1). Such a classification covers almost
all the organelles in an animal or plant cell (see, e.g., Alberts
et al., 1994; Lodishet al., 1995). Note that the vacuole and
chloroplast exist only in a plant cell. Membrane proteins such
as transmembrane and anchored-membrane proteins actually
reflect the protein types rather than subcellular locations. For
example, a membrane protein can be associated with the
membrane of endoplasmic reticulum, Golgi apparatus, lyso-
some or any other organelle enveloped by a lipid bilayer
structure. Therefore, if associated with endoplasmic reticulum,
the membrane protein is located at the endoplasmic reticulum;
if associated with the Golgi apparatus, it is located at the
Golgi apparatus; and so forth. Plasma membrane proteins are
located at the cell envelope (Figure 1).

The classification was based on release 35.0 of SWISS-
PROT (Bairoch and Apweiler, 1997). In order to obtain a
high-quality, well defined training set, the data were screened
strictly according to the following procedures:

1. Included are only those sequences with clear locational
descriptions; those with ambiguous or uncertain words such
as ‘location unspecified’, ‘probable’, ‘potential’ and ‘by simil-
arity’ were omitted.

2. Sequences annotated by two or more locations are not
included because of a lack of uniqueness. For example, a protein
sequence labeled with ‘Golgi and nuclear’ or ‘chloroplast or
mitochondria’ was omitted. Also note that secreted proteins
should be assigned to the extracellular group and proteins
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Table I. Breakdown of the datasets used in this study

Cellular location Dataseta

S12 S12 S7 S7 S5 S5

(1) Chloroplast 154 119 154 119 154 119
(2) Cytoplasm 592 786 592 786 592 786
(3) Cytoskeleton 37 19 – – – –
(4) Endoplasmic reticulum 53 108 53 108 – –
(5) Extracell 230 101 230 101 230 101
(6) Golgi apparatus 26 4 – – – –
(7) Lysosome 38 31 – – – –
(8) Mitochondria 86 165 86 165 – –
(9) Nucleus 288 431 288 431 288 431

(10) Peroxisome 32 24 – – – –
(11) Plasma membrane 758 803 758 803 758 803
(12) Vacuole 25 0 – – – –

Total proteins 2319 2591 2161 2513 2022 2240

aThe datasets were extracted from release 35.0 of SWISS-PROT (Bairoch
and Apweiler, 1997). DatasetS12 was obtained by following procedures 1–3
as described in Location classification. DatasetsS7 andS5 were derived
from S12. DatasetsS12, S7 andS5 are the three independent datasets, none of
which contains a protein that occurs in the datasetsS12, S7 andS5,
respectively, as described in Location classification, point 5.

annotated with ‘microtubule’ or ‘filament’ should be assigned
to the cytoskeletal group (Albertset al., 1994).

3. For protein sequences with the same name but from
different species, only one of them was included. After the
above screening procedures we obtained a dataset,S12, of 12
categories that contains 2319 protein sequences, of which 154
are chloroplast proteins, 592 cytoplasmic, 37 cytoskeletal, 53
endoplasmic reticulum, 230 extracellular, 26 Golgi apparatus,
38 lysosomal, 86 mitochondrial, 288 nuclear, 32 peroxisomal,
758 plasma membrane and 25 vacuoles (column 2 of Table I).

4. In order to observe the impact of the number of subcellular
locations considered on the prediction rate, two more datasets
were constructed. These two datasets areS7 andS5 (columns
4 and 6 of Table I, respectively), which were obtained by
simply removing the small subsets fromS12. The datasetsS7

was derived fromS12 by removing the cytoskeleton, Golgi
apparatus, lysosome, peroxisome and vacuole subsets, none of
which contains more than 50 proteins inS12. The datasetS5 was
derived fromS7 by further removing endoplasmic reticulum and
mitochondrial subsets, none of which contains more than 100
proteins inS12.

5. In order to test the consistency, three corresponding
independent datasets were constructed. They areS12, S7 and
S5 (columns 3, 5 and 7 of Table I, respectively), none of which
contains a protein that occurs in the datasetsS12, S7 andS5.

For the convenience of further study or practical application,
the names of the 2319 proteins inS12 are listed in Appendix
A, from which the datasetsS7 and S5 can also be easily
obtained. In this study, the datasetsS12, S7 and S5 were used
as the training datasets to predict the subcellular location of a
protein among the 12, seven and five categories of classifica-
tion, respectively. Owing to limitations on space, the protein
names in the datasetsS12, S7 and S5 are not given here, but
they are available upon request.

Prediction algorithm
For brevity, let us use indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12 to represent chloroplast, cytoplasm, cytoskeleton,
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endoplasmic reticulum, extracell, Golgi apparatus, lysosome,
mitochondria, nucleus, peroxisome, plasma membrane and
vacuole, respectively. We use G1 to represent the chloroplast
subset consisting of only chloroplast proteins, G2 to represent
the cytoplasm subset consisting of only cytoplasmic proteins,
and so forth.

Suppose there areN proteins forming a setS, which is the
union of m subsets, i.e.

S 5 G1 U G2 U G3 U G4 U . . . U Gm (1)

The size of each subset is given bynξ (ξ 5 1, 2, 3, . . .,m),
wherenξ represents the number of proteins in the subsetGξ.

Obviously, N 5 Σ
m

ξ 5 1

nξ . For example, for the dataset in

Appendix A, we havem 5 12, n1 5 154, n2 5 592, . . .,
n11 5 758,n12 5 25 andN 5 2319.

The prediction algorithm is established based on the correla-
tion between the subcellular location of a protein and its amino
acid composition. Suppose the 20 amino acids are ordered
alphabetically according to their single-letter codes: A, C, D,
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y. Thus,
any protein inS will correspond to a vector or a point in
the 20-D (dimensional) space, i.e. it can be described by
(K.C.Chou, 1995)

xξ
k,1

xξ
k,2X ξ

k 5 , (k 5 1, 2, . . .,nξ ; ξ 5 1, 2, 3, . . .,m) (2)...[
xξ

k,20

]
where xξ

k,1, xξ
k,2, . . ., xξ

k,20 are the normalized occurrence
frequencies of the 20 amino acids in thekth proteinX ξ

k of the
subsetGξ. Thestandard vectorfor the subsetGξ is defined by

xξ
1

xξ
2

Xξ 5 , (ξ 5 1, 2, 3, . . .,m) (3)...[
xξ

20

]
where

1
xξ

i 5 Σ
nξ

k 5 1

xξ
k,i , (i 5 1, 2, . . ., 20). (4)

nξ

SupposeX is a protein whose cellular location is to be
predicted. It can be either one of theN proteins in the setS
or a protein outside it. It also corresponds to a point (x1, x2,
. . ., x20) in the 20-D space, wherexi has the same meaning as
xξ

k,i but is associated with proteinX instead ofX ξ
k. Hence, the

current algorithm can be formulated as follows.
The similarity between the standard vectorXξ and the

protein X is characterized by the covariant discriminant, as
defined by Liu and Chou (1998):

F(X, Xξ) 5 D2(X, Xξ) 1 ln(λξ
2 λξ

3 λξ
4 . . . λξ

20) (5)

where the first term is the squared Mahalanobis distance
between Xξ and X (Mahalanobis, 1936; Pillai, 1985;
K.C.Chou, 1995):
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D2(X, Xξ) 5 (X – Xξ)TCξ
–1(X – Xξ), (ξ 5 1, 2, 3, . . .,m)

(6)

whereCξ is the covariance matrix for subsetGξ, given by

cξ
1,1 cξ

1,2 . . . cξ
1,20

. . . cξ
2,20cξ

2,1 cξ
2,2Cξ 5 . (7).. . .. . ... . .

. . .
[

cξ
20,1 cξ

20,2 cξ
20,20

]
the superscriptT is the transposition operator andCξ

–1 is the
inverse matrix ofCξ. The matrix elements ofcξ

i,j in Equation
7 are given by

1
cξ

i,j 5 Σ
nξ

k 5 1

[xξ
k,i – xξ

i ] [xξ
k,j – xξ

j ], (i, j 5 1, 2, . . ., 19).
nξ – 1

(8)

Because the amino acid composition must be normalized, i.e.
constrained by

Σ
20

i 5 1

xξ
k,i 5 1, (k 5 1, 2, . . .,Nξ; ξ 5 1, 2, 3, . . .,m), (9)

we have (cf. Equation 8)

Σ
20

j 5 1

cξ
i,j 5 0, (i 5 1, 2, . . ., 20)

(10){ Σ
20

i 5 1

cξ
i,j 5 0, (j 5 1, 2, . . ., 20)

Therefore,Cξ defined by Equation 8 is a singular matrix, and
its inverse matrixCξ

–1 must be of divergence and meaning-
lessness. To overcome such a difficulty, one way is to reduce
the amino acid composition space from 20-D to 19-D by
removing any one of its 20 components, as described by
K.C.Chou (1995). Another way is to use an eigenvalue–
eigenvector approach to calculate the Mahalanobis distance so
as to avoid dealing with any inverse matrix. According to the
eigenvalue–eigenvector approach (Chou and Zhang, 1995),
Equation 6 can be written as

1
D2(X, Xξ) 5 Σ

20

i 5 2
Σ
20

j 5 1

(xj – xj
ξ)ψξ

i,j (11)
λ i

ξ [ ] 2

whereλ i
ξ, the eigenvalue, andψξ

i,j , the jth component of the
eigenvectorΨ i

ξ , are given by the following equation:

ψξ
i,1

ψξ
i,2

Cξ Ψ i
ξ 5 λ i

ξ Ψ i
ξ 5 λ i

ξ (i 5 1, 2, . . ., 20) (12)...[
ψξ

i,20

]
The second term of Equation 5 reflects the difference of
covariance matrices for different subsets, in whichλ i

ξ is the
ith eigenvalue of the covariance matrixCξ (i 5 2, 3, 4, . . .,
20), as defined by Equation 12. It can be proved (Appendix
B) that for the covariance matrixCξ as defined by Equation
8, there is no negative eigenvalue. Actually, owing to Equa-
tion 10, Cξ must have one eigenvalue, denoted byλ1

ξ,
equalto zero (Chou and Zhang, 1995); all the other
19 eigenvaluesλ2

ξ , λ3
ξ , . . ., λξ

20 are generally greater than
zero. Incorporation of the term ln (λ2

ξ λ3
ξ λ4

ξ . . . λξ
20) into
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Table II. Self-consistency test results for the 2319 proteins in Appendix A

the discriminant function is important, especially when the
subset sizes in the training dataset are much different (Chou
et al., 1998). It is due to the second term that the covariant
discriminantF as defined by Equation 5 is no longer a distance
because it does not satisfy the condition ofF(X,Xξ) 5 0 when
X ¥ Xξ, and also it may have a negative value, obviously in
conflict with the classical definition that a distance must satisfy
positivity, symmetry and the triangular inequality. Accordingly,
the prediction rule is formulated by

F(X, Xλ) 5 Min { F(X, X1), F(X, X2), F(X, X3), . . .,F(X, Xm)]

(13)

whereλ can be 1, 2, 3, . . .,m, and the operatorMin means
taking the least one among those in the parentheses and the
superscriptλ is the subcellular location predicted for the
proteinX. If there is a tie case,λ is not uniquely determined,
but that did not occur in our datasets.

The eigenvalue–eigenvector approach and the 19-D space
approach should give the same results. It is instructive to point
out that, if using the 19-D space approach, the covariant
discriminant value as defined by Equation 5 will be the same
regardless of which one of the 20 amino acid components is
left out for constructing a 19-D space. This can be elucidated
as follows. The covariant discriminant of Equation 5 consists
of two terms. The first term is the squared Mahalanobis
distance and its invariability has already been proved by a
theorem given by K.C.Chou (1995). The second term is a
logarithm, and its argument is actually equal to the determinant
value of the matrix obtained by deleting the 20th row and
20th column from the matrixCξ. As shown by Equation A17
of K.C.Chou (1995), such a determinant value would remain
the same regardless of which row and column were removed
from Cξ as long as the removed row and column were the
same in order. This indicates the invariability of the second
term, and hence also the invariability of the covariant dis-
criminant of Equation 5.
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Table III. Overall rates of correct prediction by self-consistency, jackknife
and independent dataset tests

aSee Table I.
bThe subcellular locations of proteins in the independent testing datasets
S12, S7 andS5 were predicted using the rule parameters derived from the
training datasetsS12, S7 andS5, respectively. The same protein did not occur
in both training and testing datasets.

Results and discussion
The prediction quality was examined by two test methods, the
self-consistency test and the jackknife test. In the self-consist-
ency test, the subcellular location for each of the proteins in a
givendataset waspredicted using the rules derived from thesame
dataset, the so-called development dataset or training dataset. In
the jackknife test, each protein in the training dataset was singled
out in turn as a ‘test protein’ and all the rule parameters were
determined from the remainingN – 1 proteins. Jackknife tests
are thought one of the most effective and objective methods for
cross-validation in statistics (Mardiaet al., 1979).

Listed in Table II are the self-consistency test results for
discriminating the 12 subcellular locations of proteins in the
datasetS12 (Appendix A) by using the covariant discriminant
algorithm (Equation 13) and ProtLock algorithm (Cedanoet al.,
1997), respectively. For a detailed prediction process by the
current algorithm, see Appendix C, where the covariant dis-
criminant values calculated according to Equation 5 for the 37
proteins in the cytoskeleton subset and their predicted results
are given as a demonstration. As can be seen from Table II, the
overall rate of correct prediction by the current algorithm is 30%
higher than that by the ProtLock algorithm (Cedanoet al., 1997).
Similar calculations were also carried out for the datasetS7 and
S5. Furthermore, a jackknife test by the current algorithm and
the ProtLock algorithm was performed for each of these three
datasets. The results obtained are summarized in Table III, from
which the following can be observed.

1. The overall rates of correct prediction obtained by the
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current algorithm using the jackknife and self-consistency tests
for datasetS12 were 68.4 and 79.9%, respectively. Imagine: if
the samples of proteins are completely randomly assigned
among m possible subsets, the rate of correct assignment
would generally be 1/m; if the random assignment is weighted
according to the sizes of subsets, then the rate of correct
prediction would bep2

1 1 p2
2 1 p2

3 1 . . . 1 p2
m, where

pi 5 ni/ Σ
m

ξ

nξ 5 ni/N (see Equation 1 and the relevant text).

Hence the correct rate by a completely random assignment for
a classification of 12 categories would be 1/12µ 8.3%, and
the corresponding rate by the weighted random assignment
would be (154/2319)2 1 (592/2319)2 1 (37/2319)2 1 (53/
2319)2 1 (230/2319)2 1 (26/2319)2 1 (38/2319)2 1 (86/
2319)2 1 (288/2319)2 1 (32/2319)2 1 (758/2319)2 1 (25/
2319)2 µ 20.5%, provided one uses the number of proteins in
each subcellular location as given in Appendix A to represent
the size of each subset. Therefore, the rates of correct prediction
obtained by using the covariant discriminant algorithm in both
the self-consistency and jackknife tests are much higher than
the corresponding completely randomized rate and weighted
randomized rate, implying that the cellular location of a protein
is considerably correlated with its amino acid composition.

2. When the number of subcellular locations considered was
reduced from 12 (S12) to seven (S7) and five (S5) by excluding
small subsets (see Table I), the corresponding rates were
increased to 73.1 and 80.0% and 78.3 and 83.1%, respectively.
This indicates that the prediction quality can be substantially
improved if one can (i) narrow down the scope of subcellular
location for a query protein according to its source and other
relevant information (e.g. if a query protein is from an animal
organism, one can exclude the chloroplast and vacuole subsets
from consideration and the prediction will be made among 10
possible subcellular locations instead of 12); and (ii) improve
the training data of small subsets by adding into them more
new proteins that have been found belonging to the locations
defined by these subsets.

3. As a demonstration of a practical application, predictions
were also performed for the three independent datasetsS12, S7

andS5 using the rule parameters derived from the datasetsS12,
S7 andS5, respectively. The overall rates of correct prediction
thus obtained are also given in Table III, from which it can
be seen that the rates of correct prediction by the current
algorithm are in the range 75.9–81.8%, fully consistent with
the results obtained by the self-consistency and jackknife tests.

4. No matter whether the self-consistency test, the jackknife
test or the independent dataset test is used, the overall rates
of correct prediction obtained by the current algorithm are
significantly higher than those obtained by the ProtLock
algorithm (Cedanoet al., 1997). For the case of five subcellular
locations, the rates of correct predictions by the current
algorithm are 8.8–13.6% higher, for seven subcellular locations
17.5–26.8% higher and for 12 subcellular locations 24.5–
35.9% higher. The above data also clearly indicate that the
greater the number of subcellular locations considered, the
more significant the improvement of prediction quality would
be by using the current algorithm. In other words, the covariant
discriminant algorithm is particularly powerful when used to
deal with a classification with many possible categories.

5. The comparison of prediction quality was also extended to
cover other algorithms, such as the least city-block distance
algorithm (P.Y.Chou, 1980, 1989), and the least Euclidean algo-

111

rithm (Nakashimaet al., 1986). Both of these algorithms were
developed for predicting the structural class of a protein accord-
ing to its amino acid composition, and hence can be directly
applied to predicting the protein subcellular locations based on
the same datasets as used here. It was found that for the case of
12 subcellular locations, the overall rates of correct prediction
by using the least city-block distance algorithm (P.Y.Chou, 1980,
1989) for the self-consistency, jackknife and independent dataset
tests were 47.9, 46.4 and 45.4%, respectively, and the corres-
ponding rates by the least Euclidean algorithm (Nakashimaet al.,
1986) were 48.1, 46.7 and 46.6%. Compared with these results,
the overall rates of correct prediction by using the current algo-
rithm are about 22–32% higher.

The current algorithm was also used to test the dataset studied
by Nakai and Kanehisa (1991). From Gram-negative bacteria
these authors extracted 106 proteins, of which 34 are inner
membrane proteins, 21 periplasmic proteins, 22 outer membrane
proteins and 29 cytoplasmic proteins (see Table 1 in Nakai and
Kanehisa, 1991). According to their report, the self-consistency
by using the expert system to predict the localization sites of the
106 proteins was 83%. No cross-validation was performed in
their study. For the same database, when using the ProtLock
algorithm (Cedanoet al., 1997), the corresponding rate was
85%. However, when using the current algorithm, the corres-
ponding rate was 99%, further indicating its power.

To demonstrate its power further, the current algorithm was
also used to test the dataset recently studied by Reinhardt and
Hubbard (1998). After discarding those groups in which the
amount of data available is too small for statistical analysis,
these authors classified 997 prokaryotic proteins into three
different subcellular locations: 688 cytoplasmic, 107 extracellu-
lar and 202 periplasmic proteins. Within each group none had
.90% sequence identity with any other. According to their
report, for such a dataset the rate of correct prediction by them
using the neural network method for a subsampling test was
81%. This is the highest accuracy rate so far reported for a
cross-validation test in protein cellular location prediction.
Now for the same dataset, when using the discriminant function
algorithm to perform prediction, we found that the rate of
correct prediction was 91% by self-consistency test and 86%
by jackknife test; both are considerably higher than 81%.
Further, in their subsampling procedure, only a very small
fraction of the possible divisions were investigated (Chou and
Elrod, 1998), and the results thus obtained would certainly
bear considerable arbitrariness. Actually, compared with the
limited subsampling test, the jackknife test is much more
objective and rigorous (Mardia, 1979). Accordingly, from both
the percentage of correct prediction and the rationality of
cross-validation, a higher prediction quality can be obtained
by using the current algorithm.

That the current algorithm can lead to the best prediction
quality is because it takes into account the coupling effect
among different amino acid components, which is a kind of
collective interaction, as formulated by a set of covariance
matrices in Equation 7,Cξ(ξ 5 1, 2, . . .,m), that is the core
of the current algorithm. It is through each of these matrices
that a more reasonable statistical distance (K.C.Chou, 1995;
Chou and Zhang, 1995), the Mahananobis distance, in the
amino acid composition space is defined (see the first term of
Equation 5), and it is through the eigenvalues of these matrices
that the coupling effects in different subsets as well as their
sizes are reflected (see the second term of Equation 5). It
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Table IV. The standard vector derived from the training dataset of Appendix A for each of the 12 protein subcellular locations

should be pointed out that although the ProtLock algorithm
(Cedanoet al., 1997) also contained a covariance matrix, it
did not reflect the special character for each of the individual
subsets. Particularly, in the ProtLock algorithm, a critical term,
i.e. the second term of Equation 5, was completely missed.
For a detailed discussion of this aspect, see Appendix D,
where two important differences between the current algorithm
and ProtLock are illustrated.

To show the difference in amino acid compositions that
distinguish the subcellular locations of proteins, the 20-D
standard vector derived from the proteins in the training dataset
of Appendix A for each of the 12 subcellular locations is
given in Table IV. Further, to provide an intuitive picture, each
such 20-D standard vector is projected on to a 2-D radar
diagram as given in Figure 2. In addition, the 19 positive
eigenvalues for each of the 12 corresponding covariance
matrices (see Equations 7 and 12) are given in Table V that
might be of use for investigating the component-coupled
effects at a deeper level, especially for understanding the
important contribution from the second term of Equation 5 as
illustrated in Figure 3. This is a vitally important term for
dealing with the case where the sizes of subsets are different.
However, such an important term and also the denominator
nξ – 1 in Equation 8 were not included in the original least
Mahalanobis distance algorithm (K.C.Chou, 1995), although
good results were still obtained because the case studied there
consisted of subsets with the same size. It is very important
to realize this, otherwise the prediction algorithm might be
misused, leading to poor results and an incorrect conclusion,
as elaborated in a recent paper (Chouet al., 1998).

Conclusion
The idea of predicting the subcellular location of a protein
according to itsaminoacid composition isbasedon the following
rationale. (i) Different compartments of a cell usually have
different physio-chemical environments which might be very
sensitive in selectively accommodating a protein according to
its structural feature, particularly its surface physical chemistry
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Fig. 2. Radar diagrams to show the difference of the 20-D standard vectors,
i.e. the average amino acid compositions for the proteins in the following
subcellular locations: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton,
(4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome,
(8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and
(12) vacuole. Amino acids are denoted by their single-letter codes (see
Table IV).
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Table V. The 19 positive eigenvalues of the covariance matrix derived from the training dataset of Appendix A for each of the 12 protein subcellular
locations

Fig. 3. Histograms to show the contributions of ln(λ ξ
2 λ ξ

3 λ ξ
4 . . . λ ξ

20) from different subsets to the covariant discriminant function of Equation 5. As can be
seen, the heights of the 12 histograms are considerably different. Only when the heights are the same can the second term of Equation 5 be omitted from the
prediction algorithm.

character. (ii) The structural class of a protein, one of the most
basic structural features, is correlated with its amino acid com-
position, as reflected by many encouraging reports of predicting
the former based on the latter alone (see, e.g., P.Y.Chou, 1980;
Klein and Delisi, 1986; Nakashimaetal., 1986; K.C.Chou, 1995;
Chou and Zhang, 1995; Baharet al., 1997). (iii) The character
of a protein surface, which is directly exposed to the environment
of a cellular compartment, is also very likely correlated with the
amino acid composition because it is determined by a sequence-
folding process during which the interaction among different
amino acid components might also play an important role. (iv)
Theabovecorrelationssuggest that the totalaminoacidcomposi-
tion might carry a ‘signal’ that identifies the subcellular location.
(v) Compared with the existing algorithms, the covariant dis-
criminant algorithm proposed in this paper can give the best
prediction quality for the protein subcellular location.
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Appendix B

For the reader’s convenience, let us prove that the covariance
matrix Cξ as defined by Equations 7 and 8 has no negative
eigenvalues.

Suppose

Bξ 5 Sξ – xξ eT (B1)

where Sξ is a 203nξ matrix consisting of thenξ vectors of
Equation 2 ande is thenξ-dimensional column vector with all
components equal to 1. Then we have

Cξ 5 Bξ Bξ
T (B2)

Suppose

y1
y2

y 5 (B3)...[
y20

]
is any real vector in the 20-D composition space. Left and

Appendix C
Covariant discriminant values computed according to Equation 5 for the 37 proteins in the cytoskeleton subset of the dataset
S12 (see Appendix A) and the subcellular location predicted for each of these proteins according to Equation 13

The rate of correct prediction for the proteins in the cytoskeleton subset inS12 5 33/375 89.2%.
aThe indices 1, 2, 3, . . ., 12 represent the 12 subcellular locations (Figure 1) as defined in the text. The index for cytoskeleton is 3; whenF(X,X3) is the
minimum, the corresponding protein is predicted to be located in cytoskeleton. The index for cytoplasm is 2; whenF(X,X2) is the minimum, the corresponding
protein is predicted to be located in cytoplasm. And so forth.
bIncorrect prediction.
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right multiplying both sides of Equation B2 byyT and y,
respectively, we can obtain

yTCξ y 5 yTBξ Bξ
T y 5 (Bξ

T y)T(Bξ
T y) ù 0 (B4)

SupposeΨ is an eigenvector ofCξ, i.e.

Cξ Ψ 5 λΨ (B5)

where λ is the corresponding eigenvalue. Left multiplying
both sides of the above equation byΨT, we can obtain

ΨTCξΨ 5 ΨTλΨ 5 λΨTΨ (B6)

Because Equation B4 and the fact that an eigenvector is a
non-zero vector, it follows that

ΨTCξ Ψ
λ 5 ù 0 (B7)

ΨTΨ

This completes the proof.
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Appendix D

Although the coupling effects among different amino acid
components are taken into account by both the ProtLock
algorithm (Cedanoet al., 1977) and the current algorithm via
a covariance matrix, there are two important differences
between these two.

Difference in covariance matrix
Rather thanCξ as defined by Equations 7 and 8, the covariance
matrix in the ProtLock algorithm was given by

c1,1 c1,2 . . . c1,20
c2,1 c2,2 . . . c2,20

C 5 (D1). . . .. . . .. . . .[
c20,1 c20,2 . . . c20,20

]
where

ci,j 5 Σ
m

ξ 5 1
Σ
nξ

k 5 1

[xξ
k,i – xi] [xξ

k,j – xj] (i, j 5 1, 2, . . ., 20)(D2)

where

1 1
xi 5 Σ

m

ξ 5 1
Σ
nξ

k 5 1

xξ
k,i 5 Σ

m

ξ 5 1

nξ xξ
i (i 5 1, 2, . . ., 20)

N N
(D3)

Comparing Equation D1 with Equation 7, Equation D2 with
Equation 8 and Equation D3 with Equation 4, one can easily
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see that there was only one covariance matrixC in ProtLock
that was defined for the entire setS, rather than each of them
subsetsGξ (ξ 5 1, 2, 3, . . .,m) having its own covariance
matrix Cξ. Accordingly, the Mahananobis distance defined in
ProtLock is a simplified form of the genuine Mahalanobis
distance. This will certainly make the ProtLock algorithm lose
some power in discriminating entries from different subsets.

It is instinctive to point out that the covariance matrix
(Equation D1) given by Cedanoet al. (1997) was defined in
a 20-D space rather than 19-D space as originally formulated
by K.C.Chou (1995). As mentioned in the prediction algorithm
section, this would lead to a divergent difficulty when
calculating the Mahalanobis distance in terms of the inverse
matrix of C unless the user understood the use of the
eigenvalue–eigenvector approach as described in this paper to
avoid such a difficulty.
Difference in discriminative criterion
The prediction in ProtLock was based on Mahananobis distance
as defined by

D2
S(X, Xξ) 5 (X – Xξ)TC–1(X – Xξ) (ξ 5 1, 2, 3, . . .)(D4)

In contrast, the prediction in the current algorithm is based on
the covariant discriminant function given by Equation 5. A
comparison of Equation 5 with Equation D4 indicates that the
contribution from the term ln(λξ

2 λξ
3 λξ

4 . . . λξ
20), which reflects

the difference of the covariance matricesCξ for different
classes, was completely ignored in the ProtLock algorithm.
This will further weaken the power of discriminativity.




