Protein subcellular location prediction

Kuo-Chen Chou¹ and David W.Elrod

Computer-Aided Drug Discovery, Pharmacia & Upjohn, Kalamazoo, MI 49007-4940, USA

¹To whom correspondence should be addressed. E-mail: kuo-chen.chou@am.pnu.com

The function of a protein is closely correlated with its subcellular location. With the rapid increase in new protein sequences entering into data banks, we are confronted with a challenge: is it possible to utilize a bioinformatic approach to help expedite the determination of protein subcellular locations? To explore this problem, proteins were classified, according to their subcellular locations, into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Based on the classification scheme that has covered almost all the organelles and subcellular compartments in an animal or plant cell, a covariant discriminant algorithm was proposed to predict the subcellular location of a query protein according to its amino acid composition. Results obtained through self-consistency, jackknife and independent dataset tests indicated that the rates of correct prediction by the current algorithm are significantly higher than those by the existing methods. It is anticipated that the classification scheme and concept and also the prediction algorithm can expedite the functionality determination of new proteins, which can also be of use in the prioritization of genes and proteins identified by genomic efforts as potential molecular targets for drug design.

Keywords: amino acid composition/bioinformatics/covariant discriminant/organelles/subcellular compartments

Introduction

Given the sequence of a protein, how can its cellular location and biological function be determined? This is a problem vitally important to both cell biologists and bioinformatists today. Since the number of sequences entering into data banks has been rapidly increasing, it is time consuming and costly to approach this problem entirely by performing various locational and functional experimental tests. For example, in the recent release 35.0 (November 1997) of SWISS-PROT (Bairoch and Apweiler, 1997), the number of sequence entries has reached 69 113, which represents an increase of 17.10% over release 34.0 (October 1996). In view of this, it is highly desirable to develop an algorithm for rapidly predicting the subcellular compartments in which a new protein sequence could be located.

In a pioneering study, Nakashima and Nishikawa (1994) proposed an algorithm to discriminate between intracellular and extracellular proteins by amino acid composition and residue-pair frequencies. In their method, the training set consisted of 894 proteins, of which 649 were intracellular and 245 extracellular; the testing set consisted of 379 proteins, of which 225 were intracellular and 154 extracellular. Recently, Cedano et al. (1997) extended the discriminative classes from two to five, i.e. extracellular, integral membrane, anchored membrane, intracellular and nuclear. This represents remarkable progress in this area. Furthermore, in an attempt to improve the prediction quality of protein cellular location, they proposed an algorithm called ProtLock. The idea of predicting the cellular location of a protein according to its amino acid composition alone, as done in ProtLock, is actually stimulated by the encouraging results of structural class prediction, where the only input is also the amino acid composition (see, e.g., P.Y.Chou, 1980, 1989; Nakashima et al., 1986; K.C.Chou, 1995; Chou and Zhang, 1995). An analysis in an attempt to understand the correlation of the structural class and subcellular location of a protein with its amino acid composition was recently given by Bahar et al. (1997) and Andrade et al. (1998), respectively.

Approaching the problem in a different way, Nakai and Kanehisa (1992) and Claros *et al.* (1997) proposed to predict the cellular location of proteins based on their N-terminal sorting signals. Obviously, these algorithms rely strongly on the existence of leader sequences. However, as pointed out recently by Reinhardt and Hubbard (1998), 'In large genome analysis projects genes are usually automatically assigned and these assignments are often unreliable for the 5'-regions'. 'This can lead to leader sequences being missing or only partially included, thereby causing problems for prediction algorithms depending on them'. Therefore, a method based on the amino acid composition would be more useful in practical applications.

As stated in the paper by Cedano et al. (1997), the ProtLock algorithm is mainly based on the procedure reported by Chou and Zhang (1995) for the prediction of protein structural classes according to Mahalanobis distances. Since the least Mahalanobis distance algorithm (K.C.Chou, 1995; Chou and Zhang, 1995) is valid only when the training subset sizes are the same or approximately the same or poor predictions will otherwise result (Chou et al., 1998; Chou and Maggiora, 1988), in the ProtLock algorithm the training set for each class was chosen to contain the same number of proteins. However, as shown later, when the cellular protein classification is conducted at a deeper level, it is found that proteins located in some organelles are much more abundant in the SWISS-PROT databank than in others. Besides, for a real cell the number of cellular locations is much greater than five considered by Cedano et al. (1997). For example, the number of proteins described as being located in a nucleus is much greater than that in a lysosome, and the number of proteins in cytoplasm is much greater than that in a Golgi apparatus. In view of this, can we develop an algorithm to predict effectively the locations of proteins in cells at a much more discriminative level? The current study was initiated in an attempt to solve this problem.

Fig. 1. Schematic diagram showing the subcellular locations of proteins. For simplification, indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are used to represent chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracell, Golgi, lysosome, mitochondria, nucleus, peroxisome, plasma membrane and vacuole, respectively. Note that the vacuole and chloroplast proteins exist only in a plant cell.

Location classification

According to their subcellular locations, proteins are classified into the following 12 discriminative groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole (Figure 1). Such a classification covers almost all the organelles in an animal or plant cell (see, e.g., Alberts et al., 1994; Lodish et al., 1995). Note that the vacuole and chloroplast exist only in a plant cell. Membrane proteins such as transmembrane and anchored-membrane proteins actually reflect the protein types rather than subcellular locations. For example, a membrane protein can be associated with the membrane of endoplasmic reticulum, Golgi apparatus, lysosome or any other organelle enveloped by a lipid bilayer structure. Therefore, if associated with endoplasmic reticulum, the membrane protein is located at the endoplasmic reticulum; if associated with the Golgi apparatus, it is located at the Golgi apparatus; and so forth. Plasma membrane proteins are located at the cell envelope (Figure 1).

The classification was based on release 35.0 of SWISS-PROT (Bairoch and Apweiler, 1997). In order to obtain a high-quality, well defined training set, the data were screened strictly according to the following procedures:

1. Included are only those sequences with clear locational descriptions; those with ambiguous or uncertain words such as 'location unspecified', 'probable', 'potential' and 'by similarity' were omitted.

2. Sequences annotated by two or more locations are not included because of a lack of uniqueness. For example, a protein sequence labeled with 'Golgi and nuclear' or 'chloroplast or mitochondria' was omitted. Also note that secreted proteins should be assigned to the extracellular group and proteins

Table I. Breakdown of the datasets used in this study

Cellula	ar location	Datase	et ^a				
		S ¹²	\overline{S}^{12}	S^7	\overline{S}^7	<i>S</i> ⁵	\overline{S}^5
(1) (Chloroplast	154	119	154	119	154	119
(2) (Cytoplasm	592	786	592	786	592	786
(3) (Cytoskeleton	37	19	_	-	_	_
(4) E	Endoplasmic reticulum	53	108	53	108	_	_
(5) E	Extracell	230	101	230	101	230	101
(6) (Golgi apparatus	26	4	_	_	_	_
(7) I	Lysosome	38	31	_	_	_	_
(8) N	Vitochondria	86	165	86	165	_	_
(9) N	Nucleus	288	431	288	431	288	431
(10) F	Peroxisome	32	24	_	_	_	_
(11) F	Plasma membrane	758	803	758	803	758	803
(12) \	Vacuole	25	0	-	-	-	-
Total p	Total proteins		2591	2161	2513	2022	2240

^aThe datasets were extracted from release 35.0 of SWISS-PROT (Bairoch and Apweiler, 1997). Dataset S^{12} was obtained by following procedures 1–3 as described in Location classification. Datasets S^7 and S^5 were derived from S^{12} . Datasets \overline{S}^{12} , \overline{S}^7 and \overline{S}^5 are the three independent datasets, none of which contains a protein that occurs in the datasets S^{12} , S^7 and S^5 , respectively, as described in Location classification, point 5.

annotated with 'microtubule' or 'filament' should be assigned to the cytoskeletal group (Alberts *et al.*, 1994).

3. For protein sequences with the same name but from different species, only one of them was included. After the above screening procedures we obtained a dataset, S^{12} , of 12 categories that contains 2319 protein sequences, of which 154 are chloroplast proteins, 592 cytoplasmic, 37 cytoskeletal, 53 endoplasmic reticulum, 230 extracellular, 26 Golgi apparatus, 38 lysosomal, 86 mitochondrial, 288 nuclear, 32 peroxisomal, 758 plasma membrane and 25 vacuoles (column 2 of Table I).

4. In order to observe the impact of the number of subcellular locations considered on the prediction rate, two more datasets were constructed. These two datasets are S^7 and S^5 (columns 4 and 6 of Table I, respectively), which were obtained by simply removing the small subsets from S^{12} . The datasets S^7 was derived from S^{12} by removing the cytoskeleton, Golgi apparatus, lysosome, peroxisome and vacuole subsets, none of which contains more than 50 proteins in S^{12} . The dataset S^5 was derived from S^7 by further removing endoplasmic reticulum and mitochondrial subsets, none of which contains more than 100 proteins in S^{12} .

5. In order to test the consistency, three corresponding independent datasets were constructed. They are \overline{S}^{12} , \overline{S}^7 and \overline{S}^5 (columns 3, 5 and 7 of Table I, respectively), none of which contains a protein that occurs in the datasets S^{12} , S^7 and S^5 .

For the convenience of further study or practical application, the names of the 2319 proteins in S^{12} are listed in Appendix A, from which the datasets S^7 and S^5 can also be easily obtained. In this study, the datasets S^{12} , S^7 and S^5 were used as the training datasets to predict the subcellular location of a protein among the 12, seven and five categories of classification, respectively. Owing to limitations on space, the protein names in the datasets \overline{S}^{12} , \overline{S}^7 and \overline{S}^5 are not given here, but they are available upon request.

Prediction algorithm

For brevity, let us use indices 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 to represent chloroplast, cytoplasm, cytoskeleton,

endoplasmic reticulum, extracell, Golgi apparatus, lysosome, mitochondria, nucleus, peroxisome, plasma membrane and vacuole, respectively. We use G_1 to represent the chloroplast subset consisting of only chloroplast proteins, G_2 to represent the cytoplasm subset consisting of only cytoplasmic proteins, and so forth.

Suppose there are N proteins forming a set S, which is the union of m subsets, i.e.

$$S = G_1 \cup G_2 \cup G_3 \cup G_4 \cup \ldots \cup G_m$$
(1)

The size of each subset is given by n_{ξ} ($\xi = 1, 2, 3, ..., m$), where n_{ξ} represents the number of proteins in the subset G_{ξ} .

Obviously, $N = \sum_{\xi=1}^{m} n_{\xi}$. For example, for the dataset in

Appendix A, we have m = 12, $n_1 = 154$, $n_2 = 592$, . . ., $n_{11} = 758$, $n_{12} = 25$ and N = 2319.

The prediction algorithm is established based on the correlation between the subcellular location of a protein and its amino acid composition. Suppose the 20 amino acids are ordered alphabetically according to their single-letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y. Thus, any protein in *S* will correspond to a vector or a point in the 20-D (dimensional) space, i.e. it can be described by (K.C.Chou, 1995)

$$\mathbf{X}_{k}^{\xi} = \begin{bmatrix} x_{k,1}^{\xi} \\ x_{k,2}^{\xi} \\ \vdots \\ x_{k,20}^{\xi} \end{bmatrix}, (k = 1, 2, ..., n_{\xi}; \xi = 1, 2, 3, ..., m) \quad (2)$$

where $x_{k,1}^{\xi}$, $x_{k,2}^{\xi}$, ..., $x_{k,20}^{\xi}$ are the normalized occurrence frequencies of the 20 amino acids in the *k*th protein \mathbf{X}_{k}^{ξ} of the subset G_{ξ} . The *standard vector* for the subset G_{ξ} is defined by

$$\overline{\mathbf{X}}^{\xi} = \begin{bmatrix} \overline{x}_{1}^{\xi} \\ \overline{x}_{2}^{\xi} \\ \vdots \\ \overline{x}_{20}^{\xi} \end{bmatrix}, (\xi = 1, 2, 3, \dots, m)$$
(6)

where

$$\bar{x}_{i}^{\xi} = \frac{1}{n_{\xi}} \sum_{k=1}^{n_{\xi}} x_{k,i}^{\xi}, (i = 1, 2, \dots, 20).$$
(4)

Suppose **X** is a protein whose cellular location is to be predicted. It can be either one of the *N* proteins in the set *S* or a protein outside it. It also corresponds to a point $(x_1, x_2, \ldots, x_{20})$ in the 20-D space, where x_i has the same meaning as $x_{k,i}^{\xi}$ but is associated with protein **X** instead of \mathbf{X}_{k}^{ξ} . Hence, the current algorithm can be formulated as follows.

The similarity between the standard vector \mathbf{X}^{ξ} and the protein \mathbf{X} is characterized by the covariant discriminant, as defined by Liu and Chou (1998):

$$F(\mathbf{X}, \overline{\mathbf{X}}^{\xi}) = D^2(\mathbf{X}, \overline{\mathbf{X}}^{\xi}) + \ln(\lambda_2^{\xi} \lambda_3^{\xi} \lambda_4^{\xi} \dots \lambda_{20}^{\xi})$$
(5)

where the first term is the squared Mahalanobis distance between $\overline{\mathbf{X}}^{\xi}$ and \mathbf{X} (Mahalanobis, 1936; Pillai, 1985; K.C.Chou, 1995):

Subcellular location prediction

$$D^{2}(\mathbf{X}, \overline{\mathbf{X}}^{\xi}) = (\mathbf{X} - \overline{\mathbf{X}}^{\xi})^{\mathrm{T}} \mathbf{C}_{\overline{\xi}^{1}}(\mathbf{X} - \overline{\mathbf{X}}^{\xi}), \ (\xi = 1, 2, 3, \dots, m)$$
(6)

where C_{ξ} is the covariance matrix for subset G_{ξ} , given by

$$\mathbf{C}_{\xi} = \begin{bmatrix} c_{1,1}^{\xi} & c_{1,2}^{\xi} & \dots & c_{1,20}^{\xi} \\ c_{2,1}^{\xi} & c_{2,2}^{\xi} & \dots & c_{2,20}^{\xi} \\ \vdots & \vdots & \ddots & \vdots \\ c_{20,1}^{\xi} & c_{20,2}^{\xi} & \dots & c_{20,20}^{\xi} \end{bmatrix}$$
(7)

the superscript **T** is the transposition operator and $\mathbf{C}_{\bar{\xi}^1}$ is the inverse matrix of \mathbf{C}_{ξ} . The matrix elements of $c_{i,j}^{\xi}$ in Equation 7 are given by

$$c_{i,j}^{\xi} = \frac{1}{n_{\xi} - 1} \sum_{k=1}^{n_{\xi}} \left[x_{k,i}^{\xi} - x_{i}^{\xi} \right] \left[x_{k,j}^{\xi} - x_{j}^{\xi} \right], (i, j = 1, 2, ..., 19).$$
(8)

Because the amino acid composition must be normalized, i.e. constrained by

$$\sum_{i=1}^{20} x_{k,i}^{\xi} = 1, \ (k = 1, 2, \dots, N_{\xi}; \xi = 1, 2, 3, \dots, m),$$
(9)

we have (cf. Equation 8)

$$\begin{cases} \sum_{j=1}^{20} c_{i,j}^{\xi} = 0, \ (i = 1, 2, \dots, 20) \\ \sum_{i=1}^{20} c_{i,j}^{\xi} = 0, \ (j = 1, 2, \dots, 20) \end{cases}$$
(10)

Therefore, C_{ξ} defined by Equation 8 is a singular matrix, and its inverse matrix C_{ξ}^{-1} must be of divergence and meaninglessness. To overcome such a difficulty, one way is to reduce the amino acid composition space from 20-D to 19-D by removing any one of its 20 components, as described by K.C.Chou (1995). Another way is to use an eigenvalue– eigenvector approach to calculate the Mahalanobis distance so as to avoid dealing with any inverse matrix. According to the (3) eigenvalue–eigenvector approach (Chou and Zhang, 1995), Equation 6 can be written as

$$D^{2}(\mathbf{X}, \overline{\mathbf{X}}^{\xi}) = \sum_{i=2}^{20} \frac{1}{\lambda_{i}^{\xi}} \left[\sum_{j=1}^{20} (x_{j} - \overline{x}_{j}^{\xi}) \psi_{i,j}^{\xi} \right]^{2}$$
(11)

where λ_i^{ξ} , the eigenvalue, and $\psi_{i,j}^{\xi}$, the *j*th component of the eigenvector Ψ_i^{ξ} , are given by the following equation:

$$\mathbf{C}_{\xi} \, \boldsymbol{\Psi}_{i}^{\xi} = \lambda_{i}^{\xi} \, \boldsymbol{\Psi}_{i}^{\xi} = \lambda_{i}^{\xi} \begin{bmatrix} \boldsymbol{\Psi}_{i,1}^{\xi} \\ \boldsymbol{\Psi}_{i,2}^{\xi} \\ \vdots \\ \boldsymbol{\Psi}_{i,20}^{\xi} \end{bmatrix} \quad (i = 1, 2, \dots, 20) \qquad (12)$$

The second term of Equation 5 reflects the difference of covariance matrices for different subsets, in which λ_i^{ξ} is the *i*th eigenvalue of the covariance matrix \mathbf{C}_{ξ} ($i = 2, 3, 4, \ldots, 20$), as defined by Equation 12. It can be proved (Appendix B) that for the covariance matrix \mathbf{C}_{ξ} as defined by Equation 8, there is no negative eigenvalue. Actually, owing to Equation 10, \mathbf{C}_{ξ} must have one eigenvalue, denoted by λ_1^{ξ} , equalto zero (Chou and Zhang, 1995); all the other 19 eigenvalues λ_2^{ξ} , λ_3^{ξ} , \ldots , λ_{20}^{ξ} are generally greater than zero. Incorporation of the term ln ($\lambda_2^{\xi} \lambda_3^{\xi} \lambda_4^{\xi} \ldots \lambda_{20}^{\xi}$) into

	Rate of correct prediction for each subcellular location								
Methods	(1) Chloroplast	(2) Cytoplasm	(3) Cytoskeleton	Endoplasmic ret.					
This paper (eq.13)	$rac{114}{154} = 74.0\%$	$\frac{447}{592} = 75.5\%$	$\frac{33}{37} = 89.2\%$	$\frac{42}{53} = 79.3\%$					
ProtLock (Cedano et al., 1997)	$\frac{66}{154} = 42.9\%$	$\frac{182}{592} = 30.7\%$	$\frac{15}{37} = 40.5\%$	$\frac{27}{53} = 50.9\%$					

Table II. Self-consistency test results for the 2319 proteins in Appendix A

Rate	of correct pr	ediction for each	subcellular location	
(5) Extracellular	(6) Golgi	(7) Lysosomal	(8) Mitochondrial	(9) Nuclear
$\frac{159}{230} = 69.1\%$	$\frac{26}{26} = 100\%$	$\frac{38}{38} = 100\%$	$\frac{68}{86} = 79.1\%$	$\frac{222}{288} = 77.1\%$
$\frac{65}{230} = 28.3\%$	$\frac{13}{26} = 50.0\%$	$\frac{24}{38} = 63.2\%$	$\frac{45}{86} = 52.3\%$	$\frac{156}{288} = 54.2\%$
Rate of correct 1	prediction for	each subcellular	location Over	all rate of

(10) Peroxisomal	(11) Plasma membrane	(12) Vacuole	correct prediction
$\frac{32}{32} = 100\%$	$\frac{647}{758} = 85.4\%$	$\frac{24}{25} = 96.0\%$	$rac{1852}{2319}=79.9\%$
$\frac{11}{32} = 34.4\%$	$\frac{453}{758} = 59.8\%$	$\frac{8}{25} = 32.0\%$	$\frac{1065}{2319} = 45.9\%$

the discriminant function is important, especially when the subset sizes in the training dataset are much different (Chou *et al.*, 1998). It is due to the second term that the covariant discriminant *F* as defined by Equation 5 is no longer a distance because it does not satisfy the condition of $F(\mathbf{X}, \mathbf{\overline{X}}^{\xi}) = 0$ when $\mathbf{X} = \mathbf{\overline{X}}^{\xi}$, and also it may have a negative value, obviously in conflict with the classical definition that a distance must satisfy positivity, symmetry and the triangular inequality. Accordingly, the prediction rule is formulated by

$$F(\mathbf{X}, \overline{\mathbf{X}}^{\lambda}) = \mathbf{Min}\{F(\mathbf{X}, \overline{\mathbf{X}}^{1}), F(\mathbf{X}, \overline{\mathbf{X}}^{2}), F(\mathbf{X}, \overline{\mathbf{X}}^{3}), \dots, F(\mathbf{X}, \overline{\mathbf{X}}^{m})\}$$
(13)

where λ can be 1, 2, 3, ..., *m*, and the operator **Min** means taking the least one among those in the parentheses and the superscript λ is the subcellular location predicted for the protein **X**. If there is a tie case, λ is not uniquely determined, but that did not occur in our datasets.

The eigenvalue-eigenvector approach and the 19-D space approach should give the same results. It is instructive to point out that, if using the 19-D space approach, the covariant discriminant value as defined by Equation 5 will be the same regardless of which one of the 20 amino acid components is left out for constructing a 19-D space. This can be elucidated as follows. The covariant discriminant of Equation 5 consists of two terms. The first term is the squared Mahalanobis distance and its invariability has already been proved by a theorem given by K.C.Chou (1995). The second term is a logarithm, and its argument is actually equal to the determinant value of the matrix obtained by deleting the 20th row and 20th column from the matrix C_{ξ} . As shown by Equation A17 of K.C.Chou (1995), such a determinant value would remain the same regardless of which row and column were removed from C_{ξ} as long as the removed row and column were the same in order. This indicates the invariability of the second term, and hence also the invariability of the covariant discriminant of Equation 5.

 Table III. Overall rates of correct prediction by self-consistency, jackknife and independent dataset tests

	Se	lf-consistency t	est
		$Dataset^{a}$	
Algorithm	S^{12}	S^7	S^5
This paper (eq.13)	$\frac{1852}{2319} = 79.9\%$	$\frac{1728}{2161} = 80.0\%$	$\frac{1680}{2022} = 83.1\%$
ProtLock	1065	1022	1402
(Cedano et al., 1997)	$\frac{1065}{2319} = 45.9\%$	$\frac{1233}{2161} = 57.1\%$	$\frac{1423}{2022} = 70.4\%$
		T 11 10 4 4	
		Jackknife test	
		Dataset"	
Algorithm	S^{12}	S^7	S^5
This paper (eq.13)	$\frac{1586}{2319} = 68.4\%$	$\frac{1579}{2161} = 73.1\%$	$\frac{1584}{2022} = 78.3\%$
ProtLock			
(Cedano et al., 1997)	$\frac{1017}{2319} = 43.9\%$	$\frac{1201}{2161} = 55.6\%$	$\frac{1405}{2022} = 69.5\%$
	Indep	pendent-dataset	test ^ø
		Dataset ^a	
Algorithm	\overline{S}^{12}	\overline{S} 7	\overline{S} 5
This paper (eq.13)	$\frac{1966}{2591} = 75.9\%$	$\frac{1948}{2513} = 77.5\%$	$\frac{1833}{2240} = 81.8\%$
ProtLock			
(Cedano et al., 1997)	$\frac{1036}{2591} = 40.0\%$	$\frac{1275}{2513} = 50.7\%$	$\frac{1528}{2240} = 68.2\%$

^aSee Table I.

^bThe subcellular locations of proteins in the independent testing datasets \overline{S}^{12} , \overline{S}^7 and \overline{S}^5 were predicted using the rule parameters derived from the training datasets S^{12} , S^7 and S^5 , respectively. The same protein did not occur in both training and testing datasets.

Results and discussion

The prediction quality was examined by two test methods, the self-consistency test and the jackknife test. In the self-consistency test, the subcellular location for each of the proteins in a given dataset was predicted using the rules derived from the same dataset, the so-called development dataset or training dataset. In the jackknife test, each protein in the training dataset was singled out in turn as a 'test protein' and all the rule parameters were determined from the remaining N - 1 proteins. Jackknife tests are thought one of the most effective and objective methods for cross-validation in statistics (Mardia *et al.*, 1979).

Listed in Table II are the self-consistency test results for discriminating the 12 subcellular locations of proteins in the dataset S^{12} (Appendix A) by using the covariant discriminant algorithm (Equation 13) and ProtLock algorithm (Cedano et al., 1997), respectively. For a detailed prediction process by the current algorithm, see Appendix C, where the covariant discriminant values calculated according to Equation 5 for the 37 proteins in the cytoskeleton subset and their predicted results are given as a demonstration. As can be seen from Table II, the overall rate of correct prediction by the current algorithm is 30% higher than that by the ProtLock algorithm (Cedano et al., 1997). Similar calculations were also carried out for the dataset S^7 and S^5 . Furthermore, a jackknife test by the current algorithm and the ProtLock algorithm was performed for each of these three datasets. The results obtained are summarized in Table III, from which the following can be observed.

1. The overall rates of correct prediction obtained by the

current algorithm using the jackknife and self-consistency tests for dataset S^{12} were 68.4 and 79.9%, respectively. Imagine: if the samples of proteins are completely randomly assigned among *m* possible subsets, the rate of correct assignment would generally be 1/m; if the random assignment is weighted according to the sizes of subsets, then the rate of correct prediction would be $p_1^2 + p_2^2 + p_3^2 + \ldots + p_m^2$, where

 $p_i = n_i / \sum_{\xi}^m n_{\xi} = n_i / N$ (see Equation 1 and the relevant text).

Hence the correct rate by a completely random assignment for a classification of 12 categories would be $1/12 \approx 8.3\%$, and the corresponding rate by the weighted random assignment would be $(154/2319)^2 + (592/2319)^2 + (37/2319)^2 + (53/2319)^2 + (230/2319)^2 + (26/2319)^2 + (38/2319)^2 + (86/2319)^2 + (288/2319)^2 + (32/2319)^2 + (758/2319)^2 + (25/2319)^2 \approx 20.5\%$, provided one uses the number of proteins in each subcellular location as given in Appendix A to represent the size of each subset. Therefore, the rates of correct prediction obtained by using the covariant discriminant algorithm in both the self-consistency and jackknife tests are much higher than the corresponding completely randomized rate and weighted randomized rate, implying that the cellular location of a protein is considerably correlated with its amino acid composition.

2. When the number of subcellular locations considered was reduced from 12 (S^{12}) to seven (S^7) and five (S^5) by excluding small subsets (see Table I), the corresponding rates were increased to 73.1 and 80.0% and 78.3 and 83.1%, respectively. This indicates that the prediction quality can be substantially improved if one can (i) narrow down the scope of subcellular location for a query protein according to its source and other relevant information (e.g. if a query protein is from an animal organism, one can exclude the chloroplast and vacuole subsets from consideration and the prediction will be made among 10 possible subcellular locations instead of 12); and (ii) improve the training data of small subsets by adding into them more new proteins that have been found belonging to the locations defined by these subsets.

3. As a demonstration of a practical application, predictions were also performed for the three independent datasets \overline{S}^{12} , \overline{S}^7 and \overline{S}^5 using the rule parameters derived from the datasets S^{12} , S^7 and S^5 , respectively. The overall rates of correct prediction thus obtained are also given in Table III, from which it can be seen that the rates of correct prediction by the current algorithm are in the range 75.9–81.8%, fully consistent with the results obtained by the self-consistency and jackknife tests.

4. No matter whether the self-consistency test, the jackknife test or the independent dataset test is used, the overall rates of correct prediction obtained by the current algorithm are significantly higher than those obtained by the ProtLock algorithm (Cedano *et al.*, 1997). For the case of five subcellular locations, the rates of correct predictions by the current algorithm are 8.8–13.6% higher, for seven subcellular locations 17.5–26.8% higher and for 12 subcellular locations 24.5–35.9% higher. The above data also clearly indicate that the greater the number of subcellular locations considered, the more significant the improvement of prediction quality would be by using the current algorithm. In other words, the covariant discriminant algorithm is particularly powerful when used to deal with a classification with many possible categories.

5. The comparison of prediction quality was also extended to cover other algorithms, such as the least city-block distance algorithm (P.Y.Chou, 1980, 1989), and the least Euclidean algo-

rithm (Nakashima *et al.*, 1986). Both of these algorithms were developed for predicting the structural class of a protein according to its amino acid composition, and hence can be directly applied to predicting the protein subcellular locations based on the same datasets as used here. It was found that for the case of 12 subcellular locations, the overall rates of correct prediction by using the least city-block distance algorithm (P.Y.Chou, 1980, 1989) for the self-consistency, jackknife and independent dataset tests were 47.9, 46.4 and 45.4%, respectively, and the corresponding rates by the least Euclidean algorithm (Nakashima *et al.*, 1986) were 48.1, 46.7 and 46.6%. Compared with these results, the overall rates of correct prediction by using the current algorithm are about 22–32% higher.

The current algorithm was also used to test the dataset studied by Nakai and Kanehisa (1991). From Gram-negative bacteria these authors extracted 106 proteins, of which 34 are inner membrane proteins, 21 periplasmic proteins, 22 outer membrane proteins and 29 cytoplasmic proteins (see Table 1 in Nakai and Kanehisa, 1991). According to their report, the self-consistency by using the expert system to predict the localization sites of the 106 proteins was 83%. No cross-validation was performed in their study. For the same database, when using the ProtLock algorithm (Cedano *et al.*, 1997), the corresponding rate was 85%. However, when using the current algorithm, the corresponding rate was 99%, further indicating its power.

To demonstrate its power further, the current algorithm was also used to test the dataset recently studied by Reinhardt and Hubbard (1998). After discarding those groups in which the amount of data available is too small for statistical analysis, these authors classified 997 prokaryotic proteins into three different subcellular locations: 688 cytoplasmic, 107 extracellular and 202 periplasmic proteins. Within each group none had >90% sequence identity with any other. According to their report, for such a dataset the rate of correct prediction by them using the neural network method for a subsampling test was 81%. This is the highest accuracy rate so far reported for a cross-validation test in protein cellular location prediction. Now for the same dataset, when using the discriminant function algorithm to perform prediction, we found that the rate of correct prediction was 91% by self-consistency test and 86% by jackknife test; both are considerably higher than 81%. Further, in their subsampling procedure, only a very small fraction of the possible divisions were investigated (Chou and Elrod, 1998), and the results thus obtained would certainly bear considerable arbitrariness. Actually, compared with the limited subsampling test, the jackknife test is much more objective and rigorous (Mardia, 1979). Accordingly, from both the percentage of correct prediction and the rationality of cross-validation, a higher prediction quality can be obtained by using the current algorithm.

That the current algorithm can lead to the best prediction quality is because it takes into account the coupling effect among different amino acid components, which is a kind of collective interaction, as formulated by a set of covariance matrices in Equation 7, $C_{\xi}(\xi = 1, 2, ..., m)$, that is the core of the current algorithm. It is through each of these matrices that a more reasonable statistical distance (K.C.Chou, 1995; Chou and Zhang, 1995), the Mahananobis distance, in the amino acid composition space is defined (see the first term of Equation 5), and it is through the eigenvalues of these matrices that the coupling effects in different subsets as well as their sizes are reflected (see the second term of Equation 5). It

					Subcell	ular location	of prot	eins				
	Chloro-	Cytop-	Cytoske-	Endoplasmic	Extra-	Golgi	Lyso-	Mitochon-	Nuc-	Peroxi-	Plasma	Vacuo-
	plast	lasmic	letal	reticulum	cellular	apparatus	some	drial	lear	some	membrane	lar
Amino acid	$\overline{\mathbf{X}}^{1}$	$\overline{\mathbf{X}}^{2}$	X ³	$\overline{\mathbf{X}}^{4}$	$\overline{\mathbf{X}}$ ⁵	$\overline{\mathbf{X}}^{6}$	$\overline{\mathbf{X}}$ 7	X ⁸	$\overline{\mathbf{X}}^{9}$	$\overline{\mathbf{X}}^{10}$	$\overline{\mathbf{X}}^{11}$	$\overline{\mathbf{X}}^{12}$
code				Compon	ents of th	e standard v	ector (n	ormalized to	1)			
A	0.086	0.079	0.078	0.068	0.080	0.063	0.070	0.084	0.083	0.086	0.080	0.074
С	0.016	0.015	0.014	0.017	0.020	0.016	0.023	0.013	0.015	0.013	0.020	0.023
D	0.052	0.058	0.055	0.063	0.053	0.056	0.052	0.039	0.046	0.056	0.036	0.058
\mathbf{E}	0.064	0.072	0.096	0.075	0.053	0.070	0.049	0.048	0.064	0.059	0.043	0.065
\mathbf{F}	0.038	0.041	0.030	0.046	0.040	0.043	0.044	0.050	0.029	0.041	0.059	0.041
G	0.071	0.075	0.049	0.064	0.077	0.058	0.080	0.075	0.066	0.077	0.068	0.076
Н	0.016	0.024	0.021	0.028	0.022	0.020	0.025	0.020	0.026	0.024	0.019	0.025
Ι	0.056	0.059	0.047	0.053	0.049	0.061	0.045	0.060	0.036	0.060	0.073	0.047
K	0.064	0.064	0.086	0.070	0.058	0.062	0.046	0.062	0.075	0.066	0.042	0.056
\mathbf{L}	0.086	0.093	0.089	0.092	0.083	0.098	0.097	0.099	0.080	0.088	0.113	0.078
М	0.025	0.025	0.022	0.020	0.021	0.027	0.022	0.028	0.022	0.020	0.030	0.018
Ν	0.041	0.040	0.046	0.041	0.053	0.048	0.049	0.040	0.044	0.044	0.037	0.059
Р	0.050	0.047	0.043	0.048	0.049	0.043	0.061	0.047	0.072	0.051	0.044	0.042
Q	0.033	0.036	0.055	0.038	0.042	0.045	0.040	0.038	0.051	0.036	0.030	0.047
R	0.050	0.049	0.056	0.044	0.039	0.046	0.040	0.048	0.058	0.048	0.044	0.037
S	0.085	0.058	0.077	0.063	0.077	0.078	0.077	0.075	0.096	0.065	0.073	0.080
т	0.055	0.052	0.053	0.051	0.061	0.059	0.054	0.062	0.053	0.052	0.057	0.053
v	0.075	0.070	0.054	0.067	0.071	0.067	0.062	0.065	0.048	0.071	0.078	0.070
W	0.010	0.013	0.007	0.015	0.015	0.010	0.023	0.015	0.008	0.012	0.018	0.012
Y	0.027	0.032	0.022	0.036	0.038	0.030	0.042	0.035	0.028	0.031	0.035	0.039

Table IV. The standard vector derived from the training dataset of Appendix A for each of the 12 protein subcellular locations

should be pointed out that although the ProtLock algorithm (Cedano *et al.*, 1997) also contained a covariance matrix, it did not reflect the special character for each of the individual subsets. Particularly, in the ProtLock algorithm, a critical term, i.e. the second term of Equation 5, was completely missed. For a detailed discussion of this aspect, see Appendix D, where two important differences between the current algorithm and ProtLock are illustrated.

To show the difference in amino acid compositions that distinguish the subcellular locations of proteins, the 20-D standard vector derived from the proteins in the training dataset of Appendix A for each of the 12 subcellular locations is given in Table IV. Further, to provide an intuitive picture, each such 20-D standard vector is projected on to a 2-D radar diagram as given in Figure 2. In addition, the 19 positive eigenvalues for each of the 12 corresponding covariance matrices (see Equations 7 and 12) are given in Table V that might be of use for investigating the component-coupled effects at a deeper level, especially for understanding the important contribution from the second term of Equation 5 as illustrated in Figure 3. This is a vitally important term for dealing with the case where the sizes of subsets are different. However, such an important term and also the denominator n_{ξ} – 1 in Equation 8 were not included in the original least Mahalanobis distance algorithm (K.C.Chou, 1995), although good results were still obtained because the case studied there consisted of subsets with the same size. It is very important to realize this, otherwise the prediction algorithm might be misused, leading to poor results and an incorrect conclusion, as elaborated in a recent paper (Chou et al., 1998).

Conclusion

The idea of predicting the subcellular location of a protein according to its amino acid composition is based on the following rationale. (i) Different compartments of a cell usually have different physio-chemical environments which might be very sensitive in selectively accommodating a protein according to its structural feature, particularly its surface physical chemistry

Fig. 2. Radar diagrams to show the difference of the 20-D standard vectors, i.e. the average amino acid compositions for the proteins in the following subcellular locations: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Amino acids are denoted by their single-letter codes (see Table IV).

					S	ubcellular lo	cation					
	Chloro-	Cytop-	Cytoske-	Endoplasmic	Extra-	Golgi	Lyso-	Mitochon-	Nuc-	Peroxi-	Plasma	Vacuo-
	\mathbf{plast}	lasmic	letal	reticulum	cellular	apparatus	some	drial	lear	some	membrane	lar
Order	λ_i^1	λ_i^2	λ_i^3	λ_i^4	λ_i^5	λ_i^6	λ_i^7	λ_i^8	λ_i^9	λ_i^{10}	λ_i^{11}	λ_i^{12}
i						Eigenvalues	$\times 10^{5}$					
2	0.4	0.6	0.1	0.4	1.0	0.01	0.3	0.9	0.6	0.1	0.5	0.1
3	3.0	5.9	0.4	2.1	6.1	0.3	0.8	3.9	3.2	0.6	6.4	0.3
4	5.3	6.6	0.9	2.7	9.9	0.8	1.3	5.5	8.6	1.0	7.2	1.1
5	6.7	8.7	2.2	5.0	11.2	1.2	2.2	7.5	10.2	1.1	7.5	2.1
6	7.4	9.7	2.7	5.3	14.9	2.5	2.9	8.4	13.7	1.2	8.2	3.2
7	9.1	11.6	3.4	7.3	18.6	4.3	3.8	10.8	13.9	1.8	9.4	3.8
8	11.7	13.1	4.6	8.3	20.0	5.6	4.9	13.8	16.2	3.4	11.5	6.5
9	12.3	13.6	5.7	11.4	23.2	7.3	5.9	16.4	19.8	3.9	11.8	7.8
10	14.1	14.9	9.1	11.9	24.5	9.1	7.1	20.9	28.5	4.8	12.6	11.2
11	18.2	18.1	14.2	13.0	29.5	12.6	9.9	22.7	29.9	6.0	16.9	12.8
12	18.4	19.5	17.6	21.1	34.7	13.8	10.1	29.9	32.8	7.1	17.1	14.9
13	22.8	22.2	19.5	24.9	40.7	18.2	15.0	34.2	48.6	9.9	18.4	22.7
14	33.0	27.6	33.1	28.6	45.9	26.6	18.1	36.2	66.3	12.3	21.6	35.7
15	36.5	29.7	41.5	50.6	53.8	34.9	23.2	41.8	77.4	14.9	28.5	54.3
16	38.2	33.1	54.8	52.9	76.2	49.2	27.9	49.0	87.6	26.4	31.0	99.5
17	45.6	36.6	69.6	66.4	80.4	65.5	36.0	64.5	106.0	33.0	35.6	142.9
18	54.7	57.4	108.9	86.6	118.8	101.9	48.0	85.8	139.4	45.0	80.4	204.9
19	82.4	86.9	172.4	115.0	121.7	110.7	73.7	101.9	239.2	92.4	90.6	241.9
20	117 5	122.3	320 1	220 A	200.3	200.7	206.2	166.0	462.2	108 /	197 7	179 1

Table V. The 19 positive eigenvalues of the covariance matrix derived from the training dataset of Appendix A for each of the 12 protein subcellular locations

Fig. 3. Histograms to show the contributions of $\ln(\lambda_2^{\xi} \lambda_3^{\xi} \lambda_4^{\xi} \dots \lambda_{20}^{\xi})$ from different subsets to the covariant discriminant function of Equation 5. As can be seen, the heights of the 12 histograms are considerably different. Only when the heights are the same can the second term of Equation 5 be omitted from the prediction algorithm.

character. (ii) The structural class of a protein, one of the most basic structural features, is correlated with its amino acid composition, as reflected by many encouraging reports of predicting the former based on the latter alone (see, e.g., P.Y.Chou, 1980; Klein and Delisi, 1986; Nakashima et al., 1986; K.C.Chou, 1995; Chou and Zhang, 1995; Bahar et al., 1997). (iii) The character of a protein surface, which is directly exposed to the environment of a cellular compartment, is also very likely correlated with the amino acid composition because it is determined by a sequencefolding process during which the interaction among different amino acid components might also play an important role. (iv) The above correlations suggest that the total amino acid composition might carry a 'signal' that identifies the subcellular location. (v) Compared with the existing algorithms, the covariant discriminant algorithm proposed in this paper can give the best prediction quality for the protein subcellular location.

Acknowledgements

Valuable discussions with Professor Ferenc J.Kézdy and Dr Reqiang Yan are gratefully acknowledged. The authors are also indebted to Dr Viv Junker for interpreting the annotations in the Swiss Protein Data Bank, to Dr Nakai and Dr A.Reinhardt for providing their datasets for testing the covariant discriminant algorithm and to Raymond B.Moeller, Cynthia A.Ludlow and Diane M.Ulrich for drawing the figures.

References

- Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (1994) *Molecular Biology of the Cell*, 3rd edn. Garland Publishing, New York, London, Ch. 1.
- Andrade, M.A., O'Donoghue, S.I. and Rost, B. (1998) J. Mol. Biol., 276, 517–525.
- Bahar, I., Atilgan, A.R., Jernigan, R.L. and Erman, B. (1997) *Proteins*, **29**, 172–185.
- Bairoch, A. and Apweiler, R. (1997) Nucleic Acids Res., 25, 31-36.
- Cedano, J., Aloy, P., Pérez-Pons, J.A. and Querol, E. (1997) J. Mol. Biol., 266, 594–600.
- Chou, K.C. (1995) Proteins: Struct. Funct. Genet., 21, 319-344.
- Chou, K.C. and Elrod, D.W. (1998) Biochem. Biophys. Res. Commun., 252, 63–68.
- Chou,K.C. and Maggiora,G.M. (1998) Protein Engng, 11, 523-538.
- Chou,K.C. and Zhang,C.T. (1995) Crit. Rev. Biochem. Mol. Biol., **30**, 275–349. Chou,K.C., Liu,W., Maggiora,G.M. and Zhang,C.T. (1998) Proteins: Struct. Funct. Genet., **31**, 97–103.
- Chou, P.Y. (1980) In Abstracts of Papers, Part I, Second Chemical Congress of the North American Continent, Las Vegas.

K.-C.Chou and D.W.Elrod

- Chou, P.Y. (1989) In Fasman, G.D. (ed.), Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Press, New York, pp. 549–586.
- Claros, M.G., Brunak, S. and von Heijne, G. (1997) Curr. Opin. Struct. Biol., 7, 394–398.
- Klein, P. and Delisi, C. (1986) Biopolymers, 25, 1569-1672.
- Liu, W. and Chou, K.C. (1998) J. Protein Chem., 17, 209-217.
- Lodish,H., Baltimore,D., Berk,A., Zipursky,S.L., Matsudaira,P. and Darnell,J. (1995) *Molecular Cell Biology*, 3rd edn. Scientific American Books, New York, Ch. 3.

Mahalanobis, P.C. (1936) Proc. Natl Inst. Sci. India, 2, 49-55.

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979) *Multivariate Analysis*. Academic Press, London, pp. 322 and 381.

Nakashima,H. and Nishikawa,K. (1994) J. Mol. Biol., 238, 54–61.

Nakashima, H., Nishikawa, K. and Ooi, T. (1986) J. Biochem., 99, 152-162.

Nakai,K. and Kanehisa,M. (1991) Proteins: Struct. Funct. Genet., 11, 95–110. Nakai,K. and Kanehisa,M. (1992) Genomics, 14, 897–911.

Pillai, K.C.S. (1985) In Kotz, S. and Johnson, N.L. (eds), *Encyclopedia of*

Statistical Sciences, Vol. 5. Wiley, New York, pp. 176–181. Reinhardt, A. and Hubbard, T. (1998) Nucleic Acids Res., 26, 2230–2236.

Received July 28, 1998; revised October 16, 1998; accepted October 21, 1998

Appendix A

List of the 2319 proteins located in 12 different subcellular locations, with codes according to the SWISS-PROT data bank

	•								
(1) 154 c	hloroplast	proteins							
ACCA_ANTSP	ACP1_CUPLA	ACP2_CUPLA	ACP3_CUPLA	ACP4 CUPLA	AKH1 MAIZE	AKH2 MAIZE	ALFC SPIOL	ALFD PEA	ARO1 TOBAC
AROA_ARATH	AROC_CORSE	AROF_ARATH	AROG_ARATH	AROL_LYCES	BCCP_PORPU	BGLC_MAIZE	CAHC_ARATH	CH10_SPIOL	CHMU_ARATH
CLAA_LYCES	CLAB_LYCES	CLPA_PEA	CLPC_ODOSI	CRTI_ARATH	CYP4_ARATH	CYSL_ARATH	DAP1_WHEAT	DAP2_WHEAT	DAPA_MAIZE
DHAB_ATRHO	DPEP_SOLTU	EFGC_SOYBN	EFTS_GALSU	EFTU_ARATH	ELI5_HORVU	ELI6_HORVU	ELI9_HORVU	ELI_PEA	F16P_ARATH
FABB_ARATH	FABG_ARATH	FABH_ARATH	FABI_BRANA	FERI_DUNSA	FERZ_DUNSA	FER3_MAIZE	FER5_MAIZE	FER_ARATH	FRI2_MAIZE
GLG1 BETVU	GLG2 SOLTU	GLG3 SOLTU	GLGS HORVI	GLN2 HORVU	GINA PHANTI	GUNC MATZE	GGPP_ARATH	GLBI_CHLEU	GLB2_CHLEU
HEM2 SELMA	HEMZ ARATH	HISX BRACC	HO PORPU	HS2C ABATH	HS7S PEA	TE2 PORPH	IF3C FUGGR	TLV5 ARATH	KADC MAIZE
LEU3_BRANA	MAOC_FLAPR	MDHC_FLABI	MDHD SORVU	METC ARATH	ODPA PORPU	ODPB PORPU	PGKH CHLRE	PHS1 SOLTU	PHS2 SOLTU
PHSL_IPOBA	PLSB_CUCMO	PMGI_ANTSP	PODK_FLATR	PPOA_LYCES	PPOB_LYCES	PPOC LYCES	PPOD LYCES	PPOE LYCES	PPOF LYCES
PPO_MALDO	PSY1_LYCES	PSY_ARATH	PUR1_SOYBN	PUR3_ARATH	PUR5_ARATH	RBL_ABIMA	RBS0_SOLTU	RBS1_ACEME	RBS2_ARATH
RBS3_ACECL	RBS4_ACECL	RBS5_ACECL	RBS6_LEMGI	RBS8_NICPL	RBSA_SOLTU	RBSB_SOLTU	RBSC_SOLTU	RBSX_TOBAC	RBS_ANTSP
RCA_ARATH	RK15_ARATH	RK18_PEA	RK22_MEDSA	RK24_PEA	RK40_SPIOL	RK9_ARATH	R028_NICSY	RO30_NICPL	RO31_ARATH
SODE LYCES	RRIJ_ARATH	RRI/_ARATH	RR30_SPIOL	RUB2_BRANA	RUBA_PEA	RUBB_ARATH	S17P_ARATH	SECA_ANTSP	SODF_SOYBN
UCRA TOBAC	UCRB TOBAC	UCRI CHLRE	UGST HORVU	SIN_FORFU	INDI_DICES	INIF_FEA	ITIM_PEA	THIO_CIACA	TPIC_SECCE
	00102102110	00111_0112112	0001_00000						
(2) 592 c	vtoplasmic	proteins							
143F BOUTN	143G BOUTN	3HAO HUMAN	305B HUMAN	SNTC UIMAN	33C3 CT3311	አአመ1 ΜΈΓΓΩΑ	AATC BOUTH	AND FOOLT	
ABL1 HUMAN	ABL2 HUMAN	ABL DROME	ACEA CORGL	ACEK ECOLI	ACKA CLOTS	ACLY HIMAN	AATC_BOVIN	AAT_ECOLI	ABFA_STRLI
ACT3 BOMMO	ACT5 CHICK	ACT8 XENLA	ACTA CHICK	ACTB CRIGR	ACTG HUMAN	ACTH HUMAN	ACV1 HUMAN	ADH1 ALLMI	ADH2 HORVII
ADH3_COTJA	ADH6_HUMAN	ADH7_HUMAN	ADHA_HUMAN	ADHB HUMAN	ADHE HORSE	ADHG HUMAN	ADHI RHOSH	ADHP HUMAN	ADHS HORSE
ADHX_HORSE	ADH_FRAAN	ADI_ECOLI	ADO_BOVIN	ALAT_HUMAN	ALDR_BOVIN	ALF1_PEA	ALF2_PEA	ALF_ARATH	ALKH_BACSU
ALKK_PSEOL	AMOH_ARTGO	AMPL_ARATH	AMPN_LACHE	AMY1_DICTH	AMY2_DICTH	AMY3_DICTH	APT1_ARATH	APT2_YEAST	APT_CRILO
APX1_ARATH	ARGI_HUMAN	ARGJ_CORGL	ARI1_PENRO	ARY1_HUMAN	ARY2_HUMAN	ARY3_MOUSE	ASG1_ECOLI	ASPG_BACLI	ASRB_SALTY
ASRC_SALTY	ATDA_HUMAN	ATE1_YEAST	BAXB_HUMAN	BAXC_HUMAN	BCAT_CAEEL	BGLB_MICBI	BIEA_HUMAN	BLMH_RAT	BNC2_RAT
CAN1 HIMAN	CAN2 CHICK	CANS HUMAN	CANX CHICK	CITC_HUMAN	CAFA_ECOLI	CAH1_HORSE	CAH2_BOVIN	CAH3_HORSE	CAIB_ECOLI
CARB TRICU	CATA MICLU	CATE PSEPU	CATT VEAST	CRS RAT	CC2H PLAFK	CEA1 MYCTH	CEA2 MYCTU	CEN FCOLI	CARA_IEAST
CHEA ECOLI	CHEB ECOLI	CHLR HUMAN	CHMU BACSU	CILA ECOLI	CILB ECOLI	CKI1 SCHPO	CKI2 SCHPO	CNTE CHICK	COA1 HUMAN
COA2_HUMAN	COAC_CHICK	COBO_PSEDE	CSCA_ECOLI	CSW_DROME	CTK_HUMAN	CYAA_AERHY	CYG1_BOVIN	CYG2_RAT	CYG3_BOVIN
CYG4_HUMAN	CYG5_HUMAN	CYP4_BOVIN	CYPB_ECOLI	CYPC_ECOLI	CYPH_BLAGE	CYS3_YEAST	CYSE_ECOLI	CYSK_SPIOL	DAPD_ACTPL
DBDD_HUMAN	DCK_HUMAN	DCP_ECOLI	DCUP_HUMAN	DDLA_ECOLI	DDLB_ECOLI	DEOC_BACSU	DEXB_STRMU	DHA6_YEAST	DHAC_BOVIN
DHAP_HUMAN	DHAR_RAT	DHAS_MOUSE	DHA_BACSH	DHB1_HUMAN	DHCA_HUMAN	DHGY_METEX	DHQU_HUMAN	DHQV_HUMAN	DIDH_RAT
DUDI_BACSI	DUDZ_PSEPU	EADD FOOLT	EE10 VENLA	EFIC PORDU	DPSI_PINST	DPS2_PINST	DPSS_PINSY	DPYD_HUMAN	DUS6_HUMAN
ENO ARATH	ENP2 BACSH	EPSC BURSO	ERG8 YEAST	EFIC_FORFU	ENGL_ENTHI	FIST FLART	ENOA_ANAPL	ENOB_CHICK	ENOG_HUMAN
FACC_HUMAN	FAD1_YEAST	FKB1_BOVIN	FKBP_CANAL	FPPS_ARATH	FTDH RAT	FTHC HUMAN	FUCI ECOLI	FUMC BRAJA	G3P1 AGABI
G3P2_AGABI	G3P3_ANAVA	G3 PC_ANTMA	G3 PX_HORVU	G3P_ASPNG	G6P1_CLALE	G6P2_CLALE	G6PA_BACST	G6PB_BACST	G6PI ARATH
GAL_PSEFL	GAPN_MAIZE	GCY_YEAST	GGPP_NEUCR	GLB1_SCAIN	GLMS_BACSU	GLMT_RAT	GLN1_ALNGL	GLN2_BRAJA	gln3_horvu
GLN4_MAIZE	GLN5_MAIZE	GLNA_AGABI	GLPD_BACSU	GLYA_ACTAC	GLYC_HUMAN	GNO_GLUOX	GPDA_DROME	GPP1_YEAST	GPP2_YEAST
GSHC_BOVIN	GSHR_ANASP	GTA1_HUMAN	GTA2_HUMAN	GTA3_CHICK	GTA_PLEPL	GTC1_RAT	GTC2_RAT	GTC_MOUSE	GTH_SILCU
GUAA HUMAN	HEME FCOLL	HEMC BACSU	HCYR TOXCO	UMC6 DESVU	UMCS CUTCK	GTS_OMMSL	GTTI_CHICK	GTTZ_HUMAN	GT_ECOLI
HOXU ALCEU	HOXY ALCEU	HPRT BACSU	HXKG ECOLT	T1BC HUMAN	TADA ECOLT	TCE6 HUMAN	TCE7 HUMAN	TOF HUMAN	TDHC RAT
IDH SYNY3	IFEA HELAS	IFEB HELAS	IFE BRALA	IFRH MAIZE	INO1 ARATH	INVA ZYMMO	IPPI SCHPO	IPYR BACP3	IREB MOUSE
ISP1_BACSU	ISPA_BACST	ITK_HUMAN	JNK3_HUMAN	KAD1_BOVIN	KAD_BACST	KC1A_BOVIN	KC1B_BOVIN	KC1D_HUMAN	KCOT_HUMAN
KCRB_CANFA	KCRM_CANFA	KDSA_CHLPS	KICH_HUMAN	KIME_HUMAN	KKA4_BACCI	KPYC_SOLTU	KRB1_VACCC	LB4D_PIG	LEU3_AGRTU
LIK1_HUMAN	LIK2_HUMAN	LIPA_ECOLI	LKHA_CAVPO	LON1_BACSU	LON2_MYXXA	LON_BACBR	LOX1_ARATH	LOX2_BOVIN	LOX3_PEA
LOX4_SOYBN	LOX5_HUMAN	LOXA_LYCES	LOXB_LYCES	LOXL_MOUSE	LOXP_MOUSE	LOXX_SOYBN	LPCA_ECOLI	LPLA_ECOLI	MALQ_ECOLI
METK ECOLI	MLER LACLA	MT17 VEAST	MTD1 VFAST	MURE ECOLT	MDHC_ECHGR	MEPD_HUMAN	METE_ECOLI	METC_BORAV	METH_HUMAN
NIRD ECOLI	NMT AJECA	NNMT HUMAN	NODA AZOCA	NODB AZOCA	NRDG ECOLT	016G BACCE	OAT EMENI	OMP HUMAN	OTC1 ECOLI
OTC2_BACSU	OTCA_MYCBO	OTCC_CLOPE	OTC_HAEIN	P2A1_ARATH	P2A2_ARATH	P2A3_ARATH	P2A4_ARATH	P2AA CHICK	P2AB HUMAN
PA1F_HUMAN	PA1S_HUMAN	PCP_BACAM	PDXK_HUMAN	PE2R_RABIT	PEPC_LACHE	PEPE_ECOLI	PEPT_BACSU	PEPX_LACLA	pfla_clopa
PFLB_ECOLI	PFPN_ENTHI	PGDH_HUMAN	PGF2_BOVIN	PGFS_BOVIN	PGK1_TRYCO	PGKB_CRIFA	PGKC_ALCEU	PGKE_TRYBB	PGKP_ALCEU
PGKY_TOBAC	PGK_BACME	PGM1_YEAST	PGM2_YEAST	PH2M_TRICU	PHAB_ACISP	PHBB_ALCEU	PHBC_ALCEU	PHEA_ECOLI	PHHC_PSEAE
PASA_SOLIO	DD11 VEACT	PRNS_MIAAA	PLSI_HUMAN	PLSL_HUMAN	PMGI_MAIZE	PMMI_HUMAN	PMM_CANAL	PNPA_BACSU	PNP_ECOLI
PPV DROME	PRCA METJA	PRCB METJA	PROB BACSU	PROC ARATH	PT1A ECOLT	PT1 ALCEU	PTCA ECOLI	PTCB ECOLI	PTEA BACSU
PTFB_BACSU	PTGA_ECOLI	PTHA ECOLI	PTH_ECOLI	PTI8 HUMAN	PTI9 HUMAN	PTKA ECOLI	PTKB ECOLI	PTLA LACCA	PTMA ENTFA
PTN2_HUMAN	PTN6_HUMAN	PTN8_MOUSE	PTNA_ECOLI	PTNB_HUMAN	PTNC_HUMAN	PTP1_YEAST	PTP2_YEAST	PTP3_DICDI	PTRA_KLEPN
PTRB_KLEPN	PTWB_ECOLI	PTWX_ECOLI	PUA2_MOUSE	PUR4_YEAST	PYC1_YEAST	PYC2_YEAST	PYC_PICPA	PYP1_SCHPO	PYP2_SCHPO
PYP3_SCHPO	PYR1_DICDI	PYRD_YEAST	QOR_CAVPO	RET3_BOVIN	RET4_HUMAN	RFFE_ECOLI	RIMI_ECOLI	RIMJ_ECOLI	RIML_ECOLI
RIP3_MAIZE	RIP9_MAIZE	RIR1_HUMAN	RIR2_HUMAN	RNB_ECOLI	RNC_BACSU	RND_ECOLI	RNE_ECOLI	RURE_ACICA	SAHH_HUMAN
SAUX_ARTSP	SBMC_ECOLI	SCRB_KLEPN	SDHL_HUMAN	SERC_ECOLI	SHC_HUMAN	SLYD_ECOLI	SODI_ORYSA	SODZ_ORYSA	SOD4_MAIZE
SUAR RAT	SUDY RAT	SUH1 MOUSE	SUH2 MOUSE	SUNA_CORSP	SUND_CORSP	SUNG_CORSP	SING RAT	STER_SINP/	SIZU_YEAST
SUCE BOVIN	SUOT MOUSE	SUP1 HUMAN	SUP2 HUMAN	SUPM HUMAN	SUPP BOVIN	SYAC YEAST	SYA BARBA	SYC BACSU	SYDC YEAST
SYD_ECOLI	SYEC_YEAST	SYE_AZOBR	SYFA_BACSU	SYFB_BACSU	SYF_METJA	SYGA_BACSU	SYGB_BACSU	SYG_CHLTR	SYH1_SYNY3
SYH2_SYNY3	SYH_ECOLI	SYIP_STAAU	SYI_CAEEL	SYK1_ECOLI	SYK2_ECOLI	SYKC_YEAST	SYK_ACICA	SYLC_NEUCR	SYL_BACSU
SYMC_YEAST	SYM_BACST	SYNC_YEAST	SYN_BACSU	SYP_CHLTR	SYQ_ECOLI	SYRC_YEAST	SYR_BRELA	SYSC_YEAST	SYS_BACSU
SYT1_BACSU	SYT2_BACSU	SYTC_HUMAN	SYT_BUCAP	SYV_BACST	SYWC_YEAST	SYW_BACST	SYY1_BACSU	SYY2_BACSU	SYYC_YEAST
SYY_BACCA	TAGD_BACSU	TAGE_BACSU	TAGE_BACSU	TBUD_BURPI	THGA_ECOLI	THIK_ECOLI	THIL_ALCEU	THL_BACSU	THSI_ARAHY
TSA2 VEAST	TYRA ECOLT	TYRE ECOLT	TYSY ECOLT	TTTZ_RUMAN	UBC1 HUMAN	UBIC ECOLT	UBL1 HUMAN	UBL3 HIMAN	UBL APLCA
UDPG BOVIN	UGPO ECOLI	UVRB ECOLI	UVRC BACSU	VATE BOVIN	VATE HUMAN	VDH STRCO	VGB STAAU	XGPT ECOLI	XYLA ACTMI
VJ9M YEAST	YPR1 YEAST								

(3) 37 cytoskeletal proteins

ABP1_SACEX	CISY_TETTH	CP23_CHICK	CYLI_BOVIN	NINL_DROME	NINS_DROME	PAS5_PICPA	REST_HUMAN	BNK_DROME	CALD_CHICK
DCPY_NEUCR	MYSA_CAEEL	MYSB_CAEEL	MYSC_CAEEL	MYSD_CAEEL	MYSE_CHICK	MYSG_CHICK	MYSP_CAEEL	MYSQ_DROME	MYSS_CHICK
MYST_RABIT	MYS_AEQIR	N214_HUMAN	N358_HUMAN	NULL_DROME	CIN8_YEAST	DYN1_CAEEL	DYN2_HUMAN	DYN3_RAT	DYN_DROME

Appendix A. Continued

KCRF_STRPU KIP1_YEAST KLP1_CHLRE MAPX_DROME SCP1_MOUSE SCP2_MOUSE VP22_ASFB7

(4) 53 endoplasmic reticulum proteins

	-		-						
ABP1_ARATH	ABP2_TOBAC	ABP4_MAIZE	ANTA_HYDMA	CBP2_HUMAN	CNBP MOUSE	CRT1 BOVIN	CRT2 BOVIN	CRTC CAEEL	CRU4 BRANA
CRUA_BRANA	CYPB_BOVIN	CYPD_YEAST	CYSP_PHAVU	ENPL_CATRO	ER31_RAT	ER55_HUMAN	ER60 RAT	ER72 HUMAN	ERG2 MAGGR
ES10_RAT	EST1_CAEBR	EUG1_YEAST	FD31_BRANA	FD32_BRANA	FD3E_ARATH	FD61_SOYBN	FD62_SOYBN	FD6E ARATH	G6PE RABIT
GR74_TOBAC	GR75_TOBAC	GR78_HUMAN	GSBP_CHICK	HEMA_CVBF	HS47_CHICK	HS7C_CAEEL	IOD1_RAT	KRE5 YEAST	LHS1 YEAST
MAN1_RAT	MTP_HUMAN	P4H2_MOUSE	P4HA_CAEEL	PDI_BOVIN	PNOC_HUMAN	PTN1_HUMAN	RCN_HUMAN	SLS1 YARLI	SYN5 RAT
UGGG_DROME	VS09_ROTB4	VS10_ROTBN					_	-	

(5) 230 extracellular proteins

		-							
A1AF_RABIT	A1AS_CAVPO	A1AT_BOMMO	A1BG_HUMAN	AACT_HUMAN	ABP_HUMAN	ACH1_BOMMO	ACH2_LONAC	AFAM HUMAN	AGAR ALTAT
ALB1_SALSA	ALB2_SALSA	ALBU_BOVIN	ALS_HUMAN	AMT4_PSESA	AMT6_BACS7	AMY1_HORVU	AMYB_BACPO	AMYG_HORRE	AMYP HUMAN
AMYR_BACS8	ANT3_BOVIN	APA1_BOVIN	APA2_HUMAN	APAR_PIG	APC3_CANFA	APC4_HUMAN	APE_BOVIN	API ACHLY	APL3 LOCMI
ARY1_CALVI	ARY2_CALVI	ARYA_MANSE	ARYB_MANSE	B2MG_BARIN	BAR1_YEAST	BTD_HUMAN	CAC3_BOVIN	CAS1_BOVIN	CAS2 BOVIN
CAS3_MOUSE	CASB_BOVIN	CASK_BOVIN	CBG_HUMAN	CBPN_HUMAN	CETP_HUMAN	CFAI_HUMAN	CFH1_HUMAN	CFHD_HUMAN	CFHE HUMAN
CHI4_BRANA	CHIA_CICAR	CHIB_LYCES	CHIP_BETVU	CHOD_BREST	CL43_BOVIN	COTR_CAVPO	CTR1_PENVA	CTR2_CANFA	CTRA_BOVIN
CTRB_BOVIN	CTRL_HALRU	CUDP_METAN	CUTI_ALTBR	DEXT_ARTSP	E13A_LYCES	E13G_TOBAC	E13H_TOBAC	E13K_TOBAC	E13L_TOBAC
EBA1_FLAME	EBA2_FLAME	EBA3_FLAME	ELAS_PSEAE	EP45_XENLA	ESP4_LACVV	FA8_HUMAN	FBP3_STRPU	FETA_GORGO	FGF6_HUMAN
GDN_HUMAN	GLBH_TRICO	GLB_ASCSU	GP39_HUMAN	GRP1_RAT	GRP2_RAT	GSHP_BOVIN	GTF1_STRDO	GTF2_STRDO	GTFB_STRMU
GTFC_STRMU	GUN_ASPAC	HCY2_LIMPO	HCY6_ANDAU	HCYA_EURCA	HCYB_PANIN	HCYD_EURCA	HCYE_EURCA	HEMO_HUMAN	HIG_DROME
HLT_VIBPA	HP20_TAMAS	HP25_TAMAS	HP27_TAMAS	HPT1_HUMAN	HPT2_HUMAN	HPT_ATEGE	HYPB_HYPLI	IBP3_BOVIN	IBP5_MOUSE
IGUP_HUMAN	IML2_DROME	INIG_HUMAN	INU1_KLUMA	KNH1_BOVIN	KNH2_BOVIN	KNH_HUMAN	KNL1_BOVIN	KNL2_BOVIN	KNL_HUMAN
KNT1_RAT	KNT2_RAT	LIP_PSESP	LP1_BOMMO	LP2_BOMMO	LP3_BOMMO	LP4_BOMMO	LP5_BOMMO	LSTP_STASI	MASP_HUMAN
MIG_HUMAN	MIP_TRYCR	MS2A_DROMA	MS2B_DROMA	NKG5_HUMAN	NUC_SERMA	NUP1_PENCI	NUP3_PENSQ	OLFM_RANCA	PAC6_MOUSE
PAPA_ECOLI	PAPH_ECOLI	PBPA_STRPN	PEDF_HUMAN	PEL1_ERWCA	PEL3_ERWCA	PELA_ERWCA	PELB_ERWCA	PELC_ERWCA	PELD_ERWCH
PELE_ERWCH	PELF_ERWCH	PEL_BACSU	PERL_BOVIN	PHB_ALCFA	PHL1_BACCE	PHL2_BACCE	PHL3_BACCE	PHLD_BOVIN	PHL_LEPIN
PHO2_YARLI	PHOA_ASPNG	PIL1_ECOLI	PIL4_ECOLI	PIL5_ECOLI	PIL6_ECOLI	PIL7_ECOLI	PON2_CANFA	PON_HUMAN	PPT_BOVIN
PROA_LEGPN	PROB_STRAG	PRSH_ECOLI	PRT1_ERWCA	PRTS_BOVIN	PRTZ_BOVIN	PSPA_CANFA	PSPB_BOVIN	PSPC_BOVIN	PSPD_BOVIN
RNBR_BACAM	RNLE_LYCES	RNS2_NICAL	RN_BACCI	SACB_STRMU	SAP_RAT	SAX_RANCA	SELP_HUMAN	SEPA_STAEP	SERA_MANSE
SODE_BRUPA	SODF_MYCTU	SSP1_BOMMO	STAT_HUMAN	STRK_STRGR	SUBE_BACSU	SUBF_BACSU	SUBV_BACSU	SVS4_RAT	SXA2_SCHPC
CPA_VIBCH	THBG_HUMAN	THET_THEVU	THRB_BOVIN	TRY1_ANOGA	TRY2_ANOGA	TRY3_AEDAE	TRY4_ANOGA	TRY5_ANOGA	TRY6_ANOGA
PRY7_ANOGA	TRYA_DROER	TRYB_DROER	TRYD_DROER	TRYE_DROER	TRYG_DROME	TRYI_DROME	TRYP_ASTFL	TRYT_DROER	TRYU_DROEF
PRYZ_DROER	UFBP_PIG	VTDB_HUMAN	VTNC_HUMAN	XYN1_COCCA	XYNA_STRLI	XYNB_STRLI	XYNC_PSEFL	YGP1_YEAST	ZA2G_HUMAN

(6) 26 Golgi apparatus proteins

A471_RAT COPD_BOVIN SFT1_YEAST	A472_HUMAN COPE_BOVIN SPC3_STRPU	A47H_DISOM COPG_BOVIN SYN5_HUMAN	ADG_MOUSE COPP_BOVIN TGN3_RAT	AP19_MOUSE COPZ_BOVIN VP15_YEAST	AP47_CAEEL FURI_BOVIN VP34_YEAST	ASPX_HUMAN LDLC_CAEEL	CB45_MOUSE RAB1_LYMST	COPA_BOVIN RAB6_HUMAN	COPB_DROME RB1A_HUMAN

(7) 38 lysosomal proteins

AGAL_HUMAN	ARSA_HUMAN	ARSB_FELCA	ASM_HUMAN	ASPG_HUMAN	ASPP_AEDAE	BGAL_HUMAN	BGLR_HUMAN	CATB_BOVIN	CATC HUMAN
CATD_CHICK	CATH_HUMAN	CATL_BOVIN	CATS_BOVIN	CYS1_DICDI	CYS2_DICDI	CYS4_DICDI	CYS5_DICDI	CYSP_TRYBB	DIAC_HUMAN
FUCO_CANFA	GA6S_HUMAN	GALC_HUMAN	GL6S_CAPHI	HEXA_DICDI	HEXB_HUMAN	IDS_HUMAN	IDUA_CANFA	LIPA_HUMAN	LYAG_HUMAN
NAGA_HUMAN	PCP_HUMAN	PPA5_HUMAN	PPAL_HUMAN	PRTP_HUMAN	SAP3_HUMAN	SAP_HUMAN	SPHM_HUMAN		

(8) 86 mitochondrial proteins

ACR1_YEAST	ADT1_BOVIN	ADT2_ARATH	ADT3_BOVIN	ADT_CHLKE	ATM1_YEAST	ATPY_YEAST	BPL1_HUMAN	C560_BOVIN	COO2 SCHPC
COX1_ALBCO	COX2_ACHDO	COXT_YEAST	COXW_YEAST	COXX_YEAST	COXY_YEAST	CY1_NEUCR	CYPH_NEUCR	CYT1_CAEBR	DCMC_ANSAN
DHSD_CHOCR	FABH_BOVIN	FLX1_YEAST	FOLC_HUMAN	FUMH_HUMAN	GDC_BOVIN	IM17_YEAST	IM23_YEAST	IMP1_YEAST	IMP2_YEAST
LCF2_YEAST	LEU1_YEAST	M2OM_BOVIN	MD10_YEAST	MMM1_YEAST	MPCP_BOVIN	MRS3_YEAST	MRS4_YEAST	MSP1_CAEEL	NEUL_PIG
NI9M_BOVIN	NLTP_BOVIN	NUAM_BOVIN	NUGM_BOVIN	NUHM_BOVIN	NUJM_NEUCR	NUPM_NEUCR	NURM_NEUCR	NUXM_NEUCR	NUYM_NEUCR
OM06_YEAST	OM07_YEAST	OM20_NEUCR	OM22_NEUCR	OM37_YEAST	OM40_NEUCR	OM70_NEUCR	PET8_YEAST	PMT_YEAST	RIM2 YEAST
SDH3_YEAST	SDH4_YEAST	SHM1_YEAST	SMF1_YEAST	SMF2_YEAST	SYH_YEAST	SYV_NEUCR	TXTP_HUMAN	UCP_HUMAN	YAD8 SCHPO
YB8E_YEAST	YD1K_SCHPO	YDBA_SCHPO	YDE9_SCHPO	YEA6_YEAST	YEO3_YEAST	YFL5_YEAST	YG20_YEAST	YG5F_YEAST	YHG2_YEAST
YIA6_YEAST	YMC1_YEAST	YMC2_YEAST	YMX1_RAPSA	YNI3_YEAST	ZRC1_YEAST			_	

(9) 288 nuclear proteins

(0) 200 1	iucicai pro								
A33_PLEWA	AANT_HDVAM	ABP1_SCHPO	ACE1_YEAST	AD4B_BOVIN	ADF1_DROME	ADR6_YEAST	AFLR_ASPFL	AG_BRANA	ALCR_EMENI
AMT1_CANGA	AP2_HUMAN	APN1_YEAST	AREA_EMENI	ARG2_YEAST	ARP1_HUMAN	ATF2_RAT	ATF4_HUMAN	ATH5_ARATH	ATH7_ARATH
ATO_DROME	AX11_ARATH	AXI6_PEA	B1_USTMA	B3_USTMA	B5_USTMA	B7_USTMA	BAF1_KLULA	BASO_HUMAN	BCL3_HUMAN
BF1_HUMAN	BIMB_EMENI	BRAC_MOUSE	BRC2_DROME	BRLA_EMENI	BTEB_RAT	BUB1_YEAST	C46H_HUMAN	CB20_HUMAN	CB33_YEAST
CB80_HUMAN	CBFA_HUMAN	CBFX_HUMAN	CBF_HUMAN	CBP_MOUSE	CC16_YEAST	CC23_YEAST	CCG1_DROME	CDK7_HUMAN	CDNB_HUMAN
CDX2_MOUSE	CDX4_MOUSE	CEBB_CHICK	CEBG_HUMAN	CEB_DROME	CENA_HUMAN	CF1A_DROME	CF1_BOMMO	CF23_DROME	CF2_DROME
CGM2_SCHPO	CHD1_MOUSE	CID_DROME	CLK1_HUMAN	CPC1_NEUCR	CPH1_CANAL	CPO_DROME	CPR1_PETCR	CREA_ASPNG	CREM_MOUSE
CSE1_YEAST	CSE4_YEAST	CST2_HUMAN	CTF4_CHICK	CTK2_YEAST	CUT1_SCHPO	CYCH_XENLA	CYS3_NEUCR	DA80_YEAST	DAX1_HUMAN
DA_DROME	DBP2_SCHPO	DBX_MOUSE	DET1_ARATH	DNL3_HUMAN	DNLI_CANAL	DP30_CAEEL	DPOA_DROME	DPOL_EBV	DSRA_HUMAN
E74A_DROME	EGR1_BRARE	EGR4_RAT	ELF1_DROME	ELG_DROME	ELK1_HUMAN	ELT2_CAEEL	EMC_DROME	EMP1_WHEAT	ENL_HUMAN
ENP1_YEAST	ERC1_HUMAN	ERF_HUMAN	ERM_HUMAN	ESCA_DROME	ESP1_YEAST	ESTR_CHICK	ETS2_CHICK	ETV1_MOUSE	EVX1_HUMAN
FKB2_BOVIN	FKH_DROME	FLI1_HUMAN	FOSB_HUMAN	FOS_CHICK	FRA1_HUMAN	FTFB_DROME	FUS_HUMAN	GA15_CRILO	GA1B_XENLA
GA5B_XENLA	GAGA_DROME	GAT1_CHICK	GAT3_CHICK	GAT5_CHICK	GATB_BOMMO	GBF2_ARATH	GBF4_ARATH	GCF_HUMAN	GCN4_YEAST
GLI3_HUMAN	GLI_HUMAN	GLN3_YEAST	GROU_DROME	GRP2_SINAL	GSBP_DROME	GSCB_XENLA	GSC_BRARE	GSH1_MOUSE	GSP1_YEAST
H101_CHICK	H114_BRARE	H11R_CHICK	H11_ARATH	H13_GLYBA	H15_MOUSE	H1B_CHITE	H1D_HUMAN	H1G_STRPU	H10_CHITH
H2A2_HUMAN	H2A4_CHICK	H2AL_STRPU	H2AO_CHITH	H2AV_CHICK	H2AZ_HUMAN	H2A_ACRFO	H2B0_HUMAN	H2B2_CHLRE	H2B4_CHLRE
H2BE_STRPU	H2BN_STRPU	H5B_XENLA	H5_ANSAN	H5_CAIMO	HAP2_KLULA	HAP4_YEAST	HAT5_ARATH	HBPB_ARATH	HDF1_YEAST
HES2_RAT	HES5_RAT	HEXP_LEIMA	HG14_BOVIN	HG17_BOVIN	HIBN_XENLA	HIR2_YEAST	HM22_CAEEL	HM8_XENLA	HMAB_DROME
HME1_BRARE	HME3_BRARE	HMEV_DROME	HMG2_CHICK	HMGB_CHITE	HMGD_DROME	HMGI_HUMAN	HMGY_HUMAN	HMG_TETPY	HMIX_XENLA
HMMD_BRARE	HMPR_DROME	HMX1_CHICK	HMZ1_DROME	HN3A_HUMAN	HN3G_HUMAN	HNFA_HUMAN	HOX3_BRAFL	HP1_DROME	HPR1_CHICK
HSF1_ARATH	HSF3_LYCPE	HSP2_ALOSE	HTF4_HUMAN	HX1A_MAIZE	HX3_XENLA	HXA1_HUMAN	HXA4_CHICK	HXA7_COTJA	HXAB_CHICK
HXB2_HUMAN	HXB4_CHICK	HXB6_BRARE	HXB8_MOUSE	HXC4_HUMAN	HXC6_HUMAN	HXC9_MOUSE	HXD1_MOUSE	HXD4_CHICK	HXD9_HUMAN
HXDB_CHICK	HXDD_CHICK	ID2_HUMAN	ID4_HUMAN	IKAR_MOUSE	ILF_HUMAN	IPF1_HUMAN	IRF1_HUMAN	IRTF_HUMAN	ISL1_BRARE
ISL3_BRARE	JUNB_HUMAN	KE2_MOUSE	KEM1_YEAST	KNRL_DROME	KU70_HUMAN	LAC9_KLULA	LAM0_DROME	LAMC_HUMAN	LEUR_YEAST
LOLL_DROME	LOS1_YEAST	MA1R_YEAST	MA6R_YEAST	MAF2_MOUSE	MAT2_YEAST	MAX_BRARE	MBP1_KLULA	MCM1_YEAST	MCM3_HUMAN
MCR_HUMAN	ME18_MOUSE	MEF2_HUMAN	MET4_YEAST	MIG1_KLULA	MKS1_YEAST	MOT1_YEAST	MRF1_YEAST	MSSP_HUMAN	MTA1_YEAST
MYBA_CHICK	NAB2_YEAST	NAM8_YEAST	NECD_MOUSE	NFI2_CHICK	NFIC_CHICK	NFIR_MESAU	NGFI_CANFA	NHPA_YEAST	NIL2_HUMAN
NIT4_NEUCR	NOT2_YEAST	NUC2_SCHPO	NUMB_DROME	NUR1_MOUSE	OC3A_HUMAN	OC3N_HUMAN	OCT1_CHICK	OCT6_HUMAN	OP2_MAIZE
ORC1 KLULA	ORC3 YEAST	ORC5 YEAST	P53 CERAE	PAN2 RAT	PAX1 MOUSE	PAX3 HUMAN	PAX6_BRARE		

Appendix A. Continued

(10) 32]	peroxisomal	l proteins			CAOA CANMA	CAO VEACE	CAM1 COCUT	0300 00000	
CISZ_YEAST OXDD_BOVIN URID_CANLI	DAS_HANPO PX18_CANMA XDH_BOVIN	DHGY_CUCSA SPYA_RABIT	ECHP_CAVPO THI1_RAT	FOX2_YEAST THI2_RAT	GOX_RAT THIK_CANTR	HDE_CANTR THIL_CANTR	LUCI_PHOPY THIM_CANTR	MDHP_YEAST UBCX_PICPA	OXDA_HUMAN URIC_ASPFL
(11) 758	plasma me	embrane pr	oteins						
5H1A_HUMAN	5H1B_CRIGR	5H1D_CANFA	5H1E_HUMAN	5H1F_HUMAN	5H2A_CRIGR	5H2B_HUMAN	5H2C_HUMAN	5H5A_HUMAN	5H5B_MOUSE
AAAT_MOUSE	AC22_STRCO	ACH1_CAEEL	ACH2_CAEEL	ACH3 BOVIN	ACH4 CAEEL	ACH5 CHICK	AAZA_CANFA ACH6 CHICK	AA2B_HUMAN ACH7 BOVIN	AA3R_HUMAN ACH9 RAT
ACHA_BOVIN	ACHB_BOVIN	ACHD_BOVIN	ACHE_BOVIN	ACHG_BOVIN	ACHN_CHICK	ACHO_CARAU	ACHP_CARAU	ACTR_BOVIN	ADT_RICPR
AFQ2_STRCO AOP1 BOVIN	AG22_MOUSE AOP2 HUMAN	AG2R_BOVIN AOP3 RAT	AG2S_MOUSE AOP4 HUMAN	AGG2_HUMAN AOP5 HUMAN	ALCP_THEP3 AOPA RANES	ALKB_PSEOL	AMT_CORGL	APJ_HUMAN	APRD_PSEAE
ATC1_DICDI	ATC2_YEAST	ATC3_SCHPO	ATC4_YEAST	ATC5_YEAST	ATCF_RAT	ATCL_MYCGE	ATCP_HUMAN	ATCQ_HUMAN	ATCR_HUMAN
ATCS_SYNP7	ATCX_SCHPO	ATC_PLAFK	ATHA_CANFA	ATHL_HUMAN	ATKA_ENTFA	ATKB_ENTFA	ATMA_ECOLI	ATMB_SALTY	ATN1_BUFMA
B3A3_HUMAN	B3AT_CHICK	BAC1_HALS1	BAC2_HALS2	BACH_HALSP	BACR_HALHA	BACS HALHA	BACT HALVA	BENE ACICA	B3A2_HUMAN BETP CORGL
BFR1_SCHPO	BIOX_BACSH	BLR1_HUMAN	BMR1_BACSU	BMR2_BACSU	BMRP_CANAL	BOFA_BACSU	BRB1_HUMAN	BRB2_HUMAN	BRNQ_LACDL
CAN1 YEAST	CAR1 SCHPO	CASR BOVIN	C24B_HUMAN CB11 RABIT	C550_BACSU CB12 RABIT	C561_HUMAN CB1R HUMAN	CADA_STAAU CB21 RABIT	CADD_STAAU CB22 RABIT	CALR_HUMAN	CAMG_HUMAN
CBIQ_SALTY	CCKR_HUMAN	CCP1_RAT	CCT1_RAT	CD20_HUMAN	CD2R_HUMAN	CD47_HUMAN	CD97_HUMAN	CFTR_BOVIN	CGCC_BOVIN
CGOC_BOVIN	CHAA_ECOLI	CHS2_YEAST	CHS3_YEAST	CIC1_CYPCA	CIC2_HUMAN	CIC5_HUMAN	CICB_RAT	CICC_RABIT	CICG_HUMAN
CIKB_DROME	CIKD_HUMAN	CIKE_DROME	CIKF_RAT	CIKG_RAT	CIKL_DROME	CIKW_DROME	CIN1_LOLBL	CIN2_RAT	CIN3_RAT
CIN4_HUMAN	CINA_ELEEL	CITN_KLEPN	CKR1_HUMAN	CKR2_HUMAN	CKR3_MOUSE	CKRV_MOUSE	CLC1_HUMAN	CLC2_HUMAN	CLC3_HUMAN
COXM_BRAJA	CPSD_STRAG	CRF2_RAT	CRFR_HUMAN	CRNA_EMENI	CSG2_YEAST	CTK1 RABIT	CUX2_BACFI CTPA MYCLE	COX3_SYNVU CTPB MYCLE	COX4_THEP3 CTR1 YEAST
CTR2_MOUSE	CVAB_ECOLI	CX32_ARATH	CX33_MICUN	CX41_XENLA	CX56_CHICK	CXA1_BOVIN	CXA2_XENLA	CXA3_BOVIN	CXA4_HUMAN
CXA5_CANFA CYA1_BOVIN	CXA6_CANFA CYA2 BAT	CXA7_RAT CYA3 BAT	ÇXA8_CHICK CYA4 RAT	CXB1_HUMAN	CXB2_HUMAN	CXB3_MOUSE	CXB4_MOUSE	CXB5_MOUSE	CY14_NEUCR
CYBH_ALCEU	CYB_SULAC	CYHR_CANMA	CYPR_CALVI	D1DR_CARAU	D2D1_XENLA	D2DR_BOVIN	D3DR_CERAE	D4DR_HUMAN	D5DR_FUGRU
DADR_DIDMA	DAGA_ALTHA	DAL4_YEAST	DAL5_YEAST	DBDR_HUMAN	DCDR_XENLA	DCOB_KLEPN	DCOG_KLEPN	DEG1_CAEEL	DOPR_DROME
EMP2_HUMAN	EMP3_HUMAN	ER21_CAEEL	ER22_CAEEL	ERD1_KLULA	ERD2_ARATH	ERS1_YEAST	EDGI_HOMAN ETIR_BOVIN	EDG2_SHEEP ET3R_XENLA	ETBR BOVIN
EXOQ_RHIME	EXOY_RHIME	EXUT_ECOLI	FCEB_HUMAN	FCY2_YEAST	FDNH_ECOLI	FDNI_ECOLI	FDOH_ECOLI	FDOI_ECOLI	FDXH_HAEIN
FET4_YEAST FTSH BACSU	FEUB_BACSU FUR4 YEAST	G10D MOUSE	GAA1 BOVIN	GAA2 BOVIN	FMLI_HUMAN GAA3 BOVIN	FML2_HUMAN GAA4 BOVIN	FMLR_HUMAN GAA5 HUMAN	FRIZ_DROME GAA6 MOUSE	GAB1 BOVIN
GAB2_HUMAN	GAB3_CHICK	GAB4_CHICK	GABP_BACSU	GAB_DROME	GAC1_RAT	GAC2_BOVIN	GAC3_MOUSE	GAC4_CHICK	GAD_MOUSE
GAL2_YEAST GCY4 HIMAN	GALR_HUMAN	GAP1_YEAST GEF1_YEAST	GAR1_HUMAN	GAR2_HUMAN	GAR3_RAT	GASR_HUMAN	GC96_HUMAN	GCRC_MOUSE	GCRT_CHICK
GLR3_HUMAN	GLR4_HUMAN	GLR5_HUMAN	GLR6_RAT	GLR7_RAT	GLRK_CHICK	GLR_HUMAN	GLTP_BACSU	GLTT_BACCA	GNP1_YEAST
GNS1_YEAST	GNTP_BACLI	GPCR_LYMST	GPR1_HUMAN	GPR2_HUMAN	GPR3_HUMAN	GPR4_HUMAN	GPR5_HUMAN	GPR6_HUMAN	GPR7_HUMAN
GRFR_HUMAN	GRHR_BOVIN	GRPR_HUMAN	GTR1_BOVIN	GTR2_HUMAN	GTR3_CANFA	GTR4_HUMAN	GRAS_RAT GTR5_HUMAN	GTRL DROME	GRB_HUMAN GU27 RAT
GUDT_BACSU	GUSB_BOVIN	H218_RAT	HAK1_SCHOC	HEX6_RICCO	HGT1_KLULA	HH1R_BOVIN	HIP1_YEAST	HLY2_ECOLI	HLYB_ACTAC
HM/4_HOMAN HXT6 YEAST	HNMI_YEAST HXT7 YEAST	HSJU_YEAST HXTC YEAST	HST6_CANAL HXTD YEAST	HUPI_CHLKE	HXTI_YEAST HXTG YEAST	HXT2_YEAST HYBB_ECOLI	HXT3_YEAST	HXT4_YEAST TL8A HUMAN	HXT5_YEAST IL8B HIMAN
INA1_TRIHA	IRKO_RAT	IRK1_HUMAN	IRK2_CAVPO	IRK3_HUMAN	IRK4_HUMAN	IRK5_HUMAN	IRK7_HUMAN	IRK9_RAT	IRKG_MOUSE
IRKX_MOUSE	ITR1_YEAST	ITR2_YEAST	KBAA_BACSU	KDGT_BACSU	KHT2_KLULA	KINB_BACSU	KINC_BACSU	LACP_KLULA	LCN3_LACLA
MA6T_YEAST	MALC_STRPN	MALD_STRPN	MAM2_SCHPO	MAP3_SCHPO	MAS_HUMAN	MC3R_HUMAN	MC4R_HUMAN	MC5R_HUMAN	MCBE_ECOLI
MDR1_CAEEL	MDR2_CRIGR	MDR3_CAEEL	MDR4_DROME	MDR5_DROME	MDR_LEITA	ME10_CAEEL	MEC4_CAEEL	MEP1_YEAST	MEP2_YEAST
MSHR_BOVIN	MTR_NEUCR	MYP1_XENLA	MYP2_XENLA	MYPR_BOVIN	NAAA_PIG	NABA_RAT	NAC1_BOVIN	NAC2_RAT	NAGC_HUMAN
NAGL_HUMAN	NAH1_CRIGR	NAH2_RABIT	NAH3_HUMAN	NAH4_RAT	NAH_SCHPO	NAMI_BOVIN	NANU_RABIT	NAPA_ENTHR	NAPT_HUMAN
NKC1 HUMAN	NARK_BACSU NKC2 MOUSE	NMBR HUMAN	NASA_BACSU NME1 MOUSE	NME2 MOUSE	NHAC_BACFI NME3 MOUSE	NIST_LACLA NME4 MOUSE	NKIR_CAVPO NMZ1 HUMAN	NK2R_BOVIN NOO7 PARDE	NK3R_HUMAN NOO8 PARDE
NQOA_PARDE	NQOB_PARDE	NQOC_PARDE	NQOD_PARDE	NQOE_PARDE	NSR_LACLA	NTBE_CANFA	NTCH_RAT	NTCR_HUMAN	NTDO_BOVIN
NTG1_HUMAN NTS1 BAT	NTG2_MOUSE NTS2 RAT	NTG3_HUMAN	NTGL_HUMAN	NTNO_BOVIN NTT7 RAT	NTPI_ENTHR	NTPJ_ENTHR	NTPR_RAT	NTRY_AZOCA	NTR_HUMAN
NUOL_ECOLI	NUOM_ECOLI	NUON_ECOLI	NUPC_BACSU	NY1R_HUMAN	NY2R_HUMAN	NY4R_HUMAN	NYR_DROME	OAR_DROME	OL1E_HUMAN
OLFO_RAT	OLF1_CHICK	OLF2_CHICK	OLF3_CHICK	OLF4_CHICK	OLF5_CHICK	OLF6_CHICK	OLF7_RAT	OLF8_RAT	OLF9_RAT
OPS3_DROME	OPS4_DROME	OPSB_ANOCA	OPSD_ALLMI	OPSG_ASTFA	OPSH_ASTFA	OPSI_ASTFA	OPSR_ANOCA	OPSI_CALVI OPSU_BRARE	OPS2_DROME OPSV_CHICK
OPUB_BACSU	OPUD_BACSU	OXYR_HUMAN	P2X1_RAT	P2Y4_HUMAN	PACR_HUMAN	PAFR_CAVPO	PAR2_HUMAN	PATC_DROME	PBP4_NOCLA
PET2_RABIT	PDR5_TEAST PF2R_BOVIN	PGSA_BACSU	PECM_ERWCH PI2R_HUMAN	PEDD_PEDAC PIGF HUMAN	PERI_HUMAN PIP LACLA	PER2_HUMAN PKBS BOVIN	PERS_BOVIN PLLP RAT	PER4_HUMAN PM1 HUMAN	PETI_HUMAN PM22 HUMAN
PMA1_AJECA	PMA2_ARATH	PMA3_ARATH	PMA4_NICPL	PPA1_YEAST	PRA1_USTMA	pra2_ustma	PRO1_LEIEN	PSAA_SYNEN	PSAB_SYNEN
PSAL_SYNEN PTFC BACSU	PSN1_HUMAN PTFD_BACSU	PSN2_HUMAN PTGA BACSU	PSSI_CRILO PTLB LACCA	PSS_BACSU PTMA BACSU	PSY_NEUCR PTMB BACST	PT2A_ARATH	PT2B_ARATH PTND_ECOLI	PTBA_BACSU PTB2 CANAL	PTFB_RHOCA
PTSA_PEDPE	PTSB_BACSU	PTTR_PIG	PUR8_STRLP	P_HUMAN	QAY_NEUCR	QOX1_BACSU	QOX2_ACEAC	QOXM_SULAC	QUTD_EMENI
RAFP_PEDPE	RAG1_KLULA	RBS1_RAT	RBSC_BACSU	RCEL_CHLAU	RCEM_CHLAU	RDC1_CANFA	RDS_BOVIN	RDXA_RHOSH	RFAL_ECOLI
SAT1_RAT	SATT_HUMAN	SCAA_BOVIN	SCAB_HUMAN	SCAD_HUMAN	SCAG_HUMAN	SCRC_HUMAN	SCRT_DROME	SE12_CAEEL	SECY_BACLI
SENR_RAT	SLY4_YEAST	SNF3_YEAST	SNQ2_YEAST	SP5E_BACSU	SPAB_BACSU	SPE4_CAEEL	SSR1_HUMAN	SSR2_BOVIN	SSR3_HUMAN
55K4_HUMAN TA2R HUMAN	SSR5_HUMAN TAP1_HUMAN	TAP2_HUMAN	TAT2_YEAST	TCR2_BACSU	TCRB_BACSU	STPI_ARATH TCR_BACST	TERC_ALCSP	TH11 TRYBR	TH12 TRYBB
TH2A_TRYBB	THAS_HUMAN	THRR_CRILO	TIPW_LYCES	TJ6_MOUSE	TLR2_DROME	TOK1_YEAST	TRA2_CAEEL	TRBA_ECOLI	TRFR_HUMAN
TRK1_SACUV	TRK2_YEAST	TRK_SCHPO	TSAB_RICTS	TSAG_RICTS	TSAK_RICTS	TSAR_RICTS	TSAS_RICTS	TSAT_RICTS	TSAW_RICTS
V1AR_HUMAN	V1BR_HUMAN	V28_HUMAN	V2R_BOVIN	VAL1_YEAST	VC03_SPVKA	VG74_HSVSA	VGLB_HSVA1	VIPR_HUMAN	VIPS_HUMAN
VK02_SPVKA	VM11_YEAST	VU51_HSV6U	WC1B_ARATH	WC1C_ARATH	WHIT_DROME	Y736_HAEIN	YAG7_YEAST	YG90_HAEIN	YKH3_CAEEL
I MNZ_CAEEL	INZ3_CAEEL	IOFB_IEKEN	IOFD_IEREN	IONI_IEAST	TROST TRAST	IIFI_IEADT	1 0104 CAEED		
(12) 25 v	vacuole pro	teins							

	-								
ABRA_PLAFC	ALEU_HORVU	APE3_YEAST	AVE3_AVESA	CARP_YEAST	CARV_CANAL	CBPS_YEAST	CBPY_CANAL	CHLY_HEVBR	CYS2_MAIZE
DP87_DICDI	FAB1_YEAST	GRA5_TOXGO	INV1_LYCES	INVA_PHAAU	P34_SOYBN	PPB_YEAST	PR1A_TOBAC	PR1B_TOBAC	PR1C_TOBAC
PRTB YEAST	RAB4 DICDI	SANT PLAF7	SERA PLAFG	THGF_TOBAC					

Appendix **B**

For the reader's convenience, let us prove that the covariance matrix C_{ξ} as defined by Equations 7 and 8 has no negative eigenvalues.

Suppose

$$\mathbf{B}_{\xi} = \mathbf{S}_{\xi} - \mathbf{x}^{\xi} \, \mathbf{e}^{\mathrm{T}} \tag{B1}$$

where \mathbf{S}_{ξ} is a 20× n_{ξ} matrix consisting of the n_{ξ} vectors of Equation 2 and **e** is the n_{ξ} -dimensional column vector with all components equal to 1. Then we have

$$\mathbf{C}_{\boldsymbol{\xi}} = \mathbf{B}_{\boldsymbol{\xi}} \mathbf{B}_{\boldsymbol{\xi}}^{\mathrm{T}} \tag{B2}$$

Suppose

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{20} \end{bmatrix}$$
(B3)

is any real vector in the 20-D composition space. Left and

Appendix C

Covariant discriminant values computed according to Equation 5 for the 37 proteins in the cytoskeleton subset of the dataset S^{12} (see Appendix A) and the subcellular location predicted for each of these proteins according to Equation 13

Protein		$E(\mathbf{x},\mathbf{x}^2)$	TE (W W ³)	E7 (V V ⁴)	E7 (W. W ⁵)	E (Y Y ⁶)	E(V V ⁷)	TT (W W ⁸)	177 (187 187 ⁹)	E(V V ¹⁰)	F(V V ¹¹)	$F(Y Y^{12})$	Predicted
Code	$F(\mathbf{A}, \mathbf{A})$	F(A , A)	r(A , A)	$F(\mathbf{A},\mathbf{A})$	$F(\mathbf{A},\mathbf{A})$	r(A , A)	F(A,A)	£(A , A)	r(A , A)	F(A,A)	F(A,A)	r(A , A)	IOCALION
ABP1 SACEX	-47.94	-64.15	-146.20	-85.92	-108.27	165.30	247.34	-107.20	-121.34	275.88	-79.87	105.90	Cytoskeleton
CISY TETTH	-132.25	-145.58	-144.84	-133.41	-141.52	47.94	-65.20	-126.04	-138.39	-45.97	-128.18	-16.30	Cytoplasm ^b
CP23 CHICK	127.78	40.91	-146.89	96.69	-77.75	2364.53	731.82	-71.49	-114.97	671.92	39.37	477.30	Cytoskeleton
CYLI BOVIN	126.21	52.65	-142.02	96.16	-51.35	1071.65	607.89	84.43	-114.24	790.11	117.66	418.40	Cytoskeleton
NINL DROME	-152.93	-149.19	-155.29	-124.59	-141.66	1827.02	-68.35	-133.57	-143.46	-74.25	-141.41	-60.09	Cytoskeleton
NINS DROME	-152.23	-154.26	-157.30	-136.62	-142.12	43.53	-3.37	-138.97	-140.70	-34.93	-146.30	-90.72	Cytoskeleton
PAS5_PICPA	-159.05	-152.37	-157.89	-150.39	-146.36	0.97	-147.06	-150.08	-144.95	-116.34	-151.92	-86.53	Chloroplast ^b
REST HUMAN	-88.59	-112.63	-158.12	-125.92	-127.06	120.00	196.66	-129.55	-135.67	233.20	-97.89	-102.93	Cytoskeleton
BNK_DROME	-108.04	-98.99	-147.25	-56.71	-124.88	1691.28	-36.96	-94.87	-133.94	398.65	-92.74	63.38	Cytoskeleton
CALD_CHICK	59.68	13.77	-144.92	52.52	-36.48	2129.80	1314.42	-62.52	-99.94	2690.52	52.09	197.40	Cytoskeleton
DCPY_NEUCR	-152.59	-155.03	-149.19	-116.95	-145.20	175.86	-127.13	-150.93	-137.74	-89.29	-150.50	29.99	Cytoplasm ^b
MYSA_CAEEL	-118.27	-130.66	-169.19	-129.50	-127.08	104.22	174.67	-131.87	-140.38	228.96	-115.72	-67.74	Cytoskeleton
MYSB_CAEEL	-112.50	-125.66	-167.74	-135.83	-128.29	230.45	165.19	-132.62	-142.70	230.48	-113.83	-7.88	Cytoskeleton
MYSC_CAEEL	-116.33	-127.13	-168.74	-126.12	-128.53	336.70	147.74	-132.38	-142.98	231.57	-111.15	-32.96	Cytoskeleton
MYSD_CAEEL	-124.24	-132.02	-165.77	-128.17	-127.81	315.20	141.46	-133.49	-142.42	193.17	-120.03	-70.99	Cytoskeleton
MYSE_CHICK	-114.32	-129.13	-167.24	-128.04	-126.21	239.42	224.74	-134.05	-138.76	191.64	-103.79	-111.10	Cytoskeleton
MYSG_CHICK	-100.50	-117.80	-163.04	-121.89	-122.65	671.17	197.11	-123.83	-137.23	354.04	-94.47	-29.91	Cytoskeleton
MYSP_CAEEL	-66.19	-97.04	-155.59	-98.51	-101.21	150.54	376.69	-95.79	-122.91	808.92	-68.22	80.27	Cytoskeleton
MYSQ_DROME	-109.26	-103.01	-144.83	-70.54	-109.28	209.46	171.84	-117.41	-128.23	793.90	-94.59	-30.23	Cytoskeleton
MYSS_CHICK	-114.51	-130.52	-166.92	-126.93	-125.36	254.38	233.14	-133.41	-137.83	230.13	-104.66	-107.36	Cytoskeleton
MYST_RABIT	-101.25	-119.31	-167.07	-125.66	-121.19	692.19	223.14	-123.73	-136.86	363.43	-93.16	-46.89	Cytoskeleton
MYS_AEQIR	-115.15	-128.80	-161.66	-135.49	-127.09	720.69	201.40	-131.71	-142.06	231.48	-115.34	-88.17	Cytoskeleton
N214_HUMAN	-112.55	-86.98	-148.84	24.12	-119.86	841.08	-95.19	-86.05	-128.80	772.87	-74.94	72.59	Cytoskeleton
N358_HUMAN	-149.99	-146.55	-160.33	-141.04	-148.18	-9.84	-107.93	-149.16	-146.03	-50.64	-145.40	-78.42	Cytoskeleton
NULL_DROME	-116.08	-97.40	-151.00	-75.97	-109.37	203.61	101.33	-57.90	-137.15	216.07	-92.97	170.22	Cytoskeleton
CIN8_YEAST	-112.35	-127.15	-154.71	-118.29	-129.71	3960.65	-30.20	-117.48	-141.52	41.35	-118.42	-110.67	Cytoskeleton
DYN1_CAEEL	-147.12	-146.38	-160.89	-115.34	-142.29	-141.55	-25.83	-135.74	-143.50	-105.15	-146.96	20.24	Cytoskeleton
DYN2_HUMAN	-145.92	-148.57	-163.28	-132.45	-139.85	290.81	-51.34	-137.82	-143.73	-107.88	-149.16	-118.79	Cytoskeleton
DYN3_RAT	-154.48	-153.85	-163.76	-146.50	-146.18	-160.84	-65.80	-146.86	-147.09	-124.82	-153.68	-130.92	Cytoskeleton
DYN_DROME	-153.60	-152.79	-158.21	-141.59	-143.05	-68.18	1.55	-141.93	-144.09	-91.26	-152.98	-46.43	Cytoskeleton
KCRF_STRPU	-154.39	-155.55	-154.36	-140.75	-149.35	-90.86	-130.59	-144.97	-143.99	-98.75	-144.56	-53.28	Cytoplasm
KIP1_YEAST	-124.46	-125.30	-149.85	-114.16	-129.13	1271.24	-21.15	-120.65	-137.50	22.84	-120.95	-81.66	Cytoskeleton
KLP1_CHLRE	-142.32	-142.05	-149.19	-105.79	-137.18	891.50	-33.91	-138.46	-133.97	212.63	-138.80	80.58	Cytoskeleton
MAPX_DROME	-116.72	-120.74	-151.75	-80.47	-140.37	-144.22	-65.92	-125.92	-141.54	118.07	-120.46	24.60	Cytoskeleton
SCP1_MOUSE	-110.58	-107.42	-149.90	-125.45	-129.35	6389.11	-101.50	-99.78	-111.37	217.81	-126.40	-20.45	Cytoskeleton
SCP2_MOUSE	-107.85	-113.55	-148.74	-132.78	-129.78	8248.70	-80.76	-94.95	-104.77	210.15	-127.77	30.31	Cytoskeleton
VP22_ASFB7	-126.90	-121.66	-145.74	-130.68	-136.70	305.38	-57.75	-100.77	-120.23	141.96	-117.35	-67.32	Cytoskeleton

The rate of correct prediction for the proteins in the cytoskeleton subset in $S^{12} = 33/37 = 89.2\%$.

^aThe indices 1, 2, $3, \ldots, 12$ represent the 12 subcellular locations (Figure 1) as defined in the text. The index for cytoskeleton is 3; when $F(\mathbf{X}, \mathbf{X}^3)$ is the minimum, the corresponding protein is predicted to be located in cytoskeleton. The index for cytoplasm is 2; when $F(\mathbf{X}, \mathbf{X}^2)$ is the minimum, the corresponding protein is predicted to be located in cytoplasm. And so forth. ^bIncorrect prediction.

right multiplying both sides of Equation B2 by \mathbf{y}^{T} and \mathbf{y} , respectively, we can obtain

$$\mathbf{y}^{\mathrm{T}}\mathbf{C}_{\xi}\,\mathbf{y}\,=\,\mathbf{y}^{\mathrm{T}}\mathbf{B}_{\xi}\,\mathbf{B}_{\xi}^{\mathrm{T}}\,\mathbf{y}\,=\,(\mathbf{B}_{\xi}^{\mathrm{T}}\,\mathbf{y})^{\mathrm{T}}(\mathbf{B}_{\xi}^{\mathrm{T}}\,\mathbf{y})\geqslant0\qquad(\mathrm{B4})$$

Suppose Ψ is an eigenvector of C_{ξ} , i.e.

$$\mathbf{C}_{\xi} \boldsymbol{\Psi} = \lambda \boldsymbol{\Psi} \tag{B5}$$

where λ is the corresponding eigenvalue. Left multiplying both sides of the above equation by Ψ^{T} , we can obtain

$$\Psi^{\mathrm{T}}\mathbf{C}_{\boldsymbol{\xi}}\Psi = \Psi^{\mathrm{T}}\boldsymbol{\lambda}\Psi = \boldsymbol{\lambda}\Psi^{\mathrm{T}}\Psi \tag{B6}$$

Because Equation B4 and the fact that an eigenvector is a non-zero vector, it follows that

$$\lambda = \frac{\Psi^{\mathrm{T}} \mathbf{C}_{\xi} \Psi}{\Psi^{\mathrm{T}} \Psi} \ge 0 \tag{B7}$$

This completes the proof.

Appendix D

Although the coupling effects among different amino acid components are taken into account by both the ProtLock algorithm (Cedano *et al.*, 1977) and the current algorithm via a covariance matrix, there are two important differences between these two.

Difference in covariance matrix

Rather than C_{ξ} as defined by Equations 7 and 8, the covariance matrix in the ProtLock algorithm was given by

$$\mathbf{C} = \begin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,20} \\ c_{2,1} & c_{2,2} & \dots & c_{2,20} \\ \vdots & \vdots & \ddots & \vdots \\ c_{20,1} & c_{20,2} & \dots & c_{20,20} \end{bmatrix}$$
(D1)

where

$$c_{i,j} = \sum_{\xi=1}^{m} \sum_{k=1}^{n_{\xi}} [x_{k,i}^{\xi} - \overline{x}_i] [x_{k,j}^{\xi} - \overline{x}_j] \quad (i, j = 1, 2, ..., 20) (D2)$$

where

$$\bar{x}_{i} = \frac{1}{N} \sum_{\xi=1}^{m} \sum_{k=1}^{n_{\xi}} x_{k,i}^{\xi} = \frac{1}{N} \sum_{\xi=1}^{m} n_{\xi} x_{i}^{\xi} \quad (i = 1, 2, \dots, 20)$$
(D3)

Comparing Equation D1 with Equation 7, Equation D2 with Equation 8 and Equation D3 with Equation 4, one can easily

see that there was only one covariance matrix **C** in ProtLock that was defined for the entire set *S*, rather than each of the *m* subsets G_{ξ} ($\xi = 1, 2, 3, ..., m$) having its own covariance matrix \mathbf{C}_{ξ} . Accordingly, the Mahananobis distance defined in ProtLock is a simplified form of the genuine Mahalanobis distance. This will certainly make the ProtLock algorithm lose some power in discriminating entries from different subsets.

It is instinctive to point out that the covariance matrix (Equation D1) given by Cedano *et al.* (1997) was defined in a 20-D space rather than 19-D space as originally formulated by K.C.Chou (1995). As mentioned in the prediction algorithm section, this would lead to a divergent difficulty when calculating the Mahalanobis distance in terms of the inverse matrix of C unless the user understood the use of the eigenvalue–eigenvector approach as described in this paper to avoid such a difficulty.

Difference in discriminative criterion

The prediction in ProtLock was based on Mahananobis distance as defined by

$$D_{3}^{2}(\mathbf{X}, \mathbf{X}^{\xi}) = (\mathbf{X} - \mathbf{X}^{\xi})^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{X} - \mathbf{X}^{\xi}) \quad (\xi = 1, 2, 3, ...) (\mathrm{D4})$$

In contrast, the prediction in the current algorithm is based on the covariant discriminant function given by Equation 5. A comparison of Equation 5 with Equation D4 indicates that the contribution from the term $\ln(\lambda_{2}^{\xi}\lambda_{3}^{\xi}\lambda_{4}^{\xi}\dots\lambda_{20}^{\xi})$, which reflects the difference of the covariance matrices C_{ξ} for different classes, was completely ignored in the ProtLock algorithm. This will further weaken the power of discriminativity.