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COMMUNICATION

Using subsite coupling to predict signal peptides

Kuo-Chen Chou Materials and methods

Signal peptides comprise the N-terminal part of the secretoryComputer-Aided Drug Discovery, Pharmacia and Upjohn, Kalamazoo,
MI 49007-4940, USA. E-mail: kuo-chen.chou@am.pnu.com protein chain. They control the entry of virtually all proteins

to the secretory pathway, in both eukaryotes and prokaryotesGiven a nascent protein sequence, how can one predict its
(Gierasch, 1989; Rapoport, 1992) and are cleaved off bysignal peptide or ‘Zipcode’ sequence? This is a first import-
signal peptidase while the protein is translocated through theant problem for scientists to use signal peptides as a vehicle
membrane. As shown in Figure 1, the cleavage site is atto find new drugs or to reprogram cells for gene therapy.
(-1, �1), i.e. the location between residues –1 and �1 orBased on a model that takes into account the coupling
between the last residue of the signal peptide and the firsteffect among some key subsites, the so-called {–3, –1, �1}
residue of the mature protein. Accordingly, the prediction ofcoupling model, a new prediction algorithm is developed.
the signal peptide of a nascent protein is immediately correlatedThe overall rate of correct prediction for 1939 secretory
with the prediction of its cleavage site by the signal peptidase.proteins and 1440 non-secretary proteins was over 92%.
The length of signal peptides is varied for different secretoryIt has not escaped our attention that the new method may
proteins. As shown in Figure 2, of the 1939 signal peptidesalso serve as a useful tool for helping investigate further
studied by Nielsen et al. (1997), the shortest one containsmany unclear details regarding the molecular mechanism
eight amino acid residues and the longest contains 90 residuesof the ZIP code protein-sorting system in cells.
while the majority have a length within 18–25 residues. TheKeywords: {–3, –1, �1} coupling/non-secretory proteins/
extreme variation in length and sequence has posed a difficultysecretory proteins/‘Zipcode’ sequence
for formulating a general algorithm to predict the signal
peptides. To deal with this kind of situation, let us consider a
window with a scale of ξ1, ..., –3, –2, –1, �1, �2, ..., ξ2Introduction
(Figure 3). Such a window is called a ‘scaled window’ andThe knowledge of protein signals can be used to reprogram
symbolized as [–ξ1, �ξ2]. When sliding the scaled windowcells in a specific way for future cell and gene therapy. Protein
[–ξ1, �ξ2] along a sequence of n residues, one can consecutivelysignals have become a crucial tool for researchers to construct
highlight n – (ξ1 � ξ2) � 1 different sequences. Note that fornew drugs that are targeted to a particular organelle to correct
the current study the identification of cleavage site is verya specific defect. For example, by adding a specific tag to the
important because it is directly correlated with a correctdesired proteins, one can tag them for excretion, making them
prediction of the signal peptide. For example, instead of themuch easier to harvest (Hagmann, 1999). To use such a tool
site (-1, �1), if the cleavage site is identified at (–2, –1) orsuccessfully, first one has to identify the signal sequences. Since
(�1, �2), then the corresponding signal peptide thus derivedthe number of nascent protein sequences entering databanks has
will be one residue shorter or longer than the actual onebeen rapidly increasing, it is time consuming and costly to
(Figure 1). Therefore, of the sequence segments highlightedidentify the signal peptides entirely by experiments. Thus, a
by the scaled window, only the one with the residue at thestrong interest in the automated identification of signal
scale –1 being the very last residue of the signal sequence issequences and prediction of their cleavage sites has been
regarded as the secretion-cleavable segment (Figure 3a); whileevoked. The importance of predicting protein signal peptides
all the other segments regarded as non-secretion-cleavablehas also been elaborated recently in an excellent review by
(see, e.g., Figure 3b and c). In this way, if sliding the scaledNakai (2000).
window [–ξ1, �ξ2] along a protein sequence of n residues,The existing methods in this area are based mostly on the
one can generate one, and only one, secretion-cleavable seg-use of neural networks (Claros et al., 1997; Nielsen et al.,
ment and n – (ξ1 � ξ2) non-secretion-cleavable segments if1999; Nakai, 2000). They are actually the application of
the protein is secretory, but n – (ξ1 � ξ2) � 1 non-secretion-machine learning techniques. As pointed out by King (1996),
cleavable segments if it is non-secretory. All the secretion-the advantages of neural network prediction methods are that
cleavable segments form a cleavable or positive set denotedthey are ‘readily available’ and ‘often successful in practice’.
by S� and all the non-secretion-cleavable segments form aHe also pointed out that the disadvantages are that ‘there is
non-cleavable or negative set S–.little use of chemical or physical theory’, the methods have

Segments generated by sliding the scaled window [–ξ1, �ξ2]‘very poor explanatory power—a Hinton diagram means noth-
along protein sequences can be generally expressed asing to a protein chemist’ and ‘they are statistically rather

poorly characterized’. Besides, although the computational R–ξ1
R–(ξ1–1) ···R–3R–2R–1R�1R�2···R�(ξ2–1)R�ξ2

(1)
costs for training the networks were considerably higher,
the prediction accuracy thus obtained was not higher (and where R–ξ1

represents the residue at the scale –ξ1, R–1 the
residue at the scale –1, R�1 the residue at the scale �1 andsometimes even lower) than the analytical methods. The current

study was initiated in an attempt to develop an automated so forth.
If the amino acid residue at each of the segment subsitesmethod based on the sub-site coupling principle that can be

used to identify signal peptides faster and more accurately. (Equation 1) can be treated as an independent element, i.e.
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among these three key subsites, i.e. the {–3, –1, �1} coupling,
must be taken into account. Thus, Equations 2a and 2b should
be modified to

Ψ�(R–ξ1
···R–3R–2R–1R�1R�2···R�ξ2

)

�P�
– ξ1

(R–ξ1
)···P�

– 3(R–3)P�
– 2(R–2)P�

– 1(R–1|R–3)

P�
�1(R�1|R–1)P�

�2(R�2)···P�
�ξ2

(R�ξ2
) (3a)

and

Ψ–(R–ξ1
···R–3R–2R–1R�1R�2···R�ξ2

)Fig. 1. A schematic drawing to show the signal sequence of a protein and
how it is cleaved by the signal peptidase. An amino acid in the signal part �P–

–ξ1
(R–ξ1

)···P–
–3(R–3)P–

–2(R–2)P–
–1(R–1|R–3)is depicted as a black circle with a white number to indicate its sequential

position, while that in the mature protein depicted as an open circle with a P–
�1(R�1|R–1)P–

�2(R�2)···P–
�ξ2

(R�ξ2
)

black number. The cleavage site is at the position (–1, �1), i.e. between the (3b)
last residue of the signal sequence and the first residue of the mature
protein. During the cleavage process, a highly special fit is required between

respectively, where Pi
�(Ri) and Pi

–(Ri) are the same as thosethe amino acid residues at the subsites –3, –1 and �1 of the secretory
in Equation 2. P�

– 1(R–1|R–3) is the probability of amino acidprotein and their counterpart of the enzyme (cf. Figure 4).
R-1 occurring at the subsite –1, given that R-3 has occurred at
the subsite –3; P�

�1(R�1|R–1) is the probability of amino acidthere is no coupling at all among these subsites, then its
R�1 occurring at the subsite �1, given that R–1 has occurredattribute to the cleavable set S� and that to the non-cleavable
at the subsite –1. Their values can be derived from a positiveset S– can be formulated, respectively, as
training data set S�

0 consisting of only secretion-cleavable
Ψ�

0 (R–ξ1
···R–3R–2R–1R�1R�2···R�ξ2) peptides. Also, P–

–1(R–1|R–3) and P–
�1(R�1|R–1) have the same

meaning as P�
– 1(R–1|R–3) and P�

�1(R�1|R–1) except that they�P�
– ξ1

(R–ξ1
)···P�

– 3(R–3)P�
– 2(R–1) are derived from a negative training data set S0

– consisting of
P�

�1(R�1)P�
�2(R�2)···P�

�ξ2
(R�ξ2

) (2a) only non-cleavable peptides.
Thus, for a given peptide sequence as defined in Equationand

1, if its attribute function to the positive training set S0
� is

Ψ–
0(R–ξ1

···R–3R–2R–1R�1R�2···R�ξ2) greater than that to the negative training set S0
–, i.e. ψ� � ψ –,

then the sequence is predicted to be secretion-cleavable;�P–
–ξ1

(R–ξ1
)···P–

–3(R–3)P–
–2(R–1)

otherwise, it is predicted to be non-secretion-cleavable. WeP–
�1(R�1)P–

�2(R�2)···P–
�ξ2

(R�ξ2
) (2b)

define a discriminant function ∆, given by
where Pi

�(Ri) is the probability of amino acid Ri occurring at ∆(R–ξ1
···R–3R–2R–1R�1R�2···R�ξ2

) �
the subsite i ( � –ξ1, ..., –3, –2, –1, �1, �2, ..., �ξ2) for the

w�Ψ�(R–ξ1
···R–3R–2R–1R�1R�2···R�ξ2

)secretion-cleavable segments and Pi
–(Ri) the corresponding

probability for the non-secretion-cleavable segments. The
–w–Ψ–(R–ξ1

···R–3R–2R–1R�1R�2···R�ξ2
(4)values of the former can be derived from a positive training

data set S0
� consisting of only secretion-cleavable segments where w� and w– are the weight factors for the attribute

and the values of the latter can be derived from a negative functions derived from the positive training data set S�
0 and

training data set S�
0 consisting of only non-cleavable segments. negative training data set S0

–, respectively. If there is no special
The subscript 0 of ψ indicates that the attribute function is reason, they are generally set to be one i.e. w� � w– � 1.
formed by independent probabilities in which no coupling Thus, the criterion of predicting the seretion-cleavability for a
effect between subsites is included, as shown by the right- given peptide sequence can be formulated as follows:
hand side of Equation 2. However, in reality the protein

{The peptide is secretion-cleavable, if its ∆ � 0subsites are often coupled with one another. Therefore, it is
instructive to conduct a statistical analysis for the 1939 The peptide is non-secretion-cleavable, otherwise (5)
secretory protein sequences retrieved from Nielsen et al.

During the training process, the parameters ξ1 and ξ2 can(1997). The result thus obtained is illustrated in Figure 4, from
be changed so as to find the optimal prediction quality. Oncewhich we can see that the amino acid residues at the subsites
a secretion-cleavable peptide is predicted, the corresponding–3, –1 and �1 are mostly occupied by Ala. Furthermore,
cleavage site and signal peptide are automatically obtained asaccording to the detailed numbers generated through the
described above (cf. Figures 1 and 3a).statistical analysis, of the 1939 protein sequences, the occur-

rence frequencies of Ala at the subsites –3, –1 and �1
Results and discussionare 667, 1084 and 397, respectively, while the occurrence

frequencies of the other 19 amino acids at these subsites are To show the power of the key-subsites-coupled algorithm, the
following two criteria should be followed: (1) using a goodrelatively much lower. Besides, all these three subsites are

very close to the cleavage site (Figure 1). This suggests that data set that is accessible to the public and (2) comparison
with the best result reported in the literature. The data seta highly special match between the signal peptidase and the

secretory protein at the subsites –3, –1 and �1 is required investigated by Nielsen et al. (1997) satisfies the first criterion;
it can be retrieved from an FTP server at ftp://virus.cbs.dtu.dk/during the cleavage process. Accordingly, to establish a power-

ful method for predicting the signal peptides, the coupling pub/signalp. They consist of 1939 secretory proteins and 1440
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Fig. 2. A histogram to show the distribution of signal peptides with their length in the 1939 secretory proteins retrieved from Nielsen et al. (1997).

Fig. 4. A 3-D histogram to show the frequencies of the 20 native amino
acids that occur at the subsites proximal to the cleavage site. As shown, the
occurrence frequencies of Ala at the subsites –3, –1 and �1 are
overwhelming in comparison with the other 19 amino acids, suggesting a
high selectivity of Ala at the three key subsites (cf. Figure 1).

non-secretory proteins. The former contains 416 human, 1011Fig. 3. Illustration to show the sequence segments highlighted by sliding the
eukaryote, 105 Escherichia coli, 266 Gram negative andscaled window [–ξ1, �ξ2] along a protein sequence. During the sliding

process, the scales on the window are aligned with different amino acids so 141 Gram positive proteins, and the latter 251 human, 820
as to define different peptide segments. When, and only when, the scale –1 eukaryote, 119 E.coli, 186 Gram negative and 64 Gram positive
is aligned with the last residue of the signal sequence and scale �1 aligned

proteins. Redundant sequences were removed to guarantee thatwith the first residue of the mature protein as shown in panel (a) is the
no pairs of homologous sequences exist in the data set. Aspeptide segment seen within the window regarded as secretion-cleavable.

Peptides segments seen within the window for all the other cases, such as treated by Nielsen et al. (1997), for the secretory proteins, the
those shown in panels (b) and (c), are regarded as non-secretion-cleavable. sequence of the signal peptide and the first 30 amino acids of

the mature protein were included in the data set, whereas for
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the non-secretory proteins, the first 70 amino acids of each
Table I. Performance values by using the subsite coupling modelsequence were included. According to their report, the average

rate of correct prediction for the cleavage site location by the Rate of correct prediction for cleavage site location (%)a

neural network method was 71.54%. This is the highest success
rate so far reported for such a large data set available to the Signal peptides Non-secretory proteins Overall
public. Therefore, the result reported by Nielsen et al. (1997)
also satisfies the second criterion. To compare the prediction Scaled window Self-consistency test
quality at an equivalent condition, we used the same data set

[–ξ1, �ξ2] �� �– �as used by Nielsen et al. (1997).
The rate of correct prediction for the signal peptide set and [–6, �2] 89.84 87.44 87.47

non-signal peptide set are given by [–8, �2] 90.36 89.10 89.12
[–10, �2] 92.06 90.76 90.78

{
N�–m�

[–12, �2] 93.66 92.11 92.13
��� , for signal peptides [–13, �2] 93.96 92.46 92.48

N�
[–14, �2] 93.97 92.57 92.59
[–15, �2] 93.97 92.67 92.69
[–16, �2] 92.26 92.75 92.74N ––m–

(6)

[–18, �2] 86.02 93.09 92.99�– � , for non-signal peptides
N –

Scaled window Jackknife test
where N � represents the total number of signal peptides and

[–ξ1, �ξ2] �� �– �m� is the number of signal peptides missed in prediction; N –

is the total number of non-signal peptides and m– is the number
[–6, �2] 85.25 87.69 87.66

of non-signal peptides incorrectly predicted as signal peptide. [–8, �2] 86.90 89.15 89.12
The overall rate of correct prediction concerned is given by [–10, �2] 87.98 90.74 90.71

[–12, �2] 89.12 92.10 92.06
��N� � ��N – m� � m�

[–13, �2] 89.63 92.46 92.42
�� � 1 – (7) [–14, �2] 89.58 92.57 92.53

N� � N – N� � N –
[–15, �2] 89.94 92.66 92.63
[–16, �2] 88.14 92.74 92.68The prediction quality was examined by the standard testing [–18, �2] 81.74 93.08 92.93

procedure in statistics (Mardia et al., 1979), that is, a combina-
tion of the self-consistency and jackknife tests. In the former, aSee Equations 6 and 7 for the definitions of ��, �– and � .
the signal peptide of each protein in a given data set was
predicted using the parameters derived from the same data set, arbitrariness. Accordingly, the testing procedure adopted here

is much more objective and rigorous.the so-called training data set, whereas in the latter, each
protein in the training data set was singled out in turn as a Prediction was performed by selecting different parameters

for the scaled window [–ξ1, �ξ2]. Preliminary tests indicated‘test protein’ and all the rule-parameters were derived from
the remaining proteins. Compared with the independent data that for a given ξ1 the optimal result for Λ� was obtained

when ξ2 � 2. The predicted results by both self-consistencyset test and sub-sampling test often adopted in biology, the
jackknife test is considered to be the most effective method and jackknife tests with different values of ξ1 are given in

Table I, from which we can see that the overall success ratefor cross-validation in statistics (Mardia et al., 1979). This is
because in the independent data set test, the selection of a Λ is improved with increase in ξ1. However, if ξ1 is too large,

many short signal peptides will be excluded. For example,testing data set is arbitrary and the accuracy thus obtained
lacks an objective criterion unless the testing data set is two signal peptides were excluded when ξ1 � 10, five when

ξ1 � 12, six when ξ1 � 13, eight when ξ1 � 14, 13 whensufficiently large (Chou and Zhang, 1995). As for the sub-
sampling test in which a given data set is divided into ξ1 � 15, 52 when ξ1 � 16 and 186 when ξ1 � 18. Each of

these excluded signal peptides was counted as an unsuccessfulseveral subsets, the problem is that the number of possible
divisions might be too large to be handled. For example, in prediction event, contributing to the reduction of the success

rate for the prediction of signal peptides. As a consequence,the treatment by Nielsen et al. (1977), each data set was
divided into five approximately equal size parts and then every Λ� was gradually reduced when ξ1 � 16 (Table I). As a

compromise, we select ξ1 � 13, 14 or 15 and ξ2 � 2 as thenetwork run was carried out with one part as test data and the
other four parts as training data. The performance measures optimal parameters for the scaled window [–ξ1, �ξ2]. When

ξ1 and ξ2 are within these values, the success rates Λ�were then calculated as an average over the five different data
set divisions. Thus, even for the data of only secretory (Equation 6) for the signal peptide set are over 93 and 89%

by self-consistency and jackknife tests, respectively, while theproteins, the number of possible combinations would be
Φ � Φ1�Φ2�Φ3�Φ4�Φ5, where Φ1 � 416!/(83!83!83!- corresponding success rates Λ– (Equation 6) for the non-signal

peptide set are both over 92%. Also, the overall success rates83!84!), Φ2 � 1011!/(202!202!202!202!202!), Φ3 � 105!/
(21!21!21!21!21!), Φ4 � 266!/(53!53!53!53!54!) and Φ5 � (Equation 7) for the cleavage site location by both self-

consistency and jackknife tests are over 92%.141!/(28!28!28!28!29!). Of Φ1, Φ2, Φ3, Φ4 and Φ5, the smallest
is Φ3 µ 3.1�1069, implying Φ would be ��15.5�10345. It is Besides the neural network (NN) method proposed by

Nielsen et al. (1997), there are some other methods, such asimpossible for any existing computer to handle such a huge
number of combinations. In fact in any practical sub-sampling the simple weight matrix method (von Heijne, 1986), the

hidden Markov method (Baldi and Brunak, 1998) and thetests as performed by Nielsen et al. (1997), only a very small
fraction of the possible combinations were investigated and physical sequence analysis method (Ladunga, 1999). Like

Nielsen et al.’s method, all these methods have played anthe results thus obtained could not avoid a considerable
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important role in stimulating the development of this area. References
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sites was 79.28%. It was not possible to make a direct
Received October 13, 2000; revised November 29, 2000; accepted Decembercomparison of the present algorithm with PHYSEAN based
8, 2000on a same data set because, unlike NN (Nielsen et al., 1997),

the data sets in PHYSEAN are not accessible to the public.
Moreover, as we can see, the cross-validation procedure in
PHYSEAN is also of sub-sampling test and hence could not
avoid the problem of arbitrariness either. This can be illustrated
as follows. Even only for the 2532 preproteins, the number of
possible sub-sampling combinations would be 2532!/
(633!1899!) �� 10370. Compared with such a huge number,
five different sub-samplings, although randomly selected, are
merely a very tiny fraction of the possible combinations (i.e.,
the fraction of sub-samplings considered is ��0.5�10–369).

Accordingly, from both the higher success rate and the more
rationality in test procedures, it is worth communicating the
new algorithm to those working in the area concerned. At least
it will play a complementary role to the existing algorithms,
stimulating the development of protein signal peptide pre-
diction.

Conclusion
Since the present model has explicitly incorporated the coupling
among the subsites –3, –1 and �1 and all these subsites are
very close to the cleavage site, it can be directly used
for investigating the protein secretion-cleaved mechanism by
signal peptidase. The present model can also serve as a useful
vehicle for helping further investigate many unclear details
regarding the molecular mechanism of the ZIP code protein-
sorting system in cells. Furthermore, since signal peptides are
the key in determining the subcellular location of proteins, the
{–3, –1, �1} model might have some impact in improving
the prediction quality of protein subcellular location (Cedano
et al., 1997; Reinhardt and Hubbard, 1998; Chou and Elrod,
1998, 1999a,b; Chou, 2000; Nakai, 2000).
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